Tam giác ABC vuông tại A thì tan B bằng:
A. A C B C
B. A B A C
C. cot C
D. cos C
Chọn câu đúng nhất.1 .Cho ∆ ABC vuông cân tại A. vậy góc B bằng:A. 600B. 900C. 450D. 12002. Một tam giác là vuông nếu độ dài 3 cạnh của nó là:A. 2,3,4 B. 3,4,5 C. 4,5,6 D. 6,7,83. Một tam giác cân có góc ở đáy là 350 thì góc ở đỉnh có số đo là:A. 1000B. 1100C. 850D. 12004. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vuông tại đâu?A. Tại B B. Tại C C. Tại A D. Không phải là tam giác vuông5. Tam giác ABC có AB = AC = BC thì tam giác ABC là A. Tam giác nhọn B. Tam giác cân C. Tam giác vuông D. Tam giác đều6. Tam giác nào vuông nếu độ lớn ba góc kà:A. 300, 700, 800B. 200, 700, 900 C. 650, 450, 700D. 600, 600, 6007. Tam giác cân là tam giác có:A. Hai cạnh bằng nhau -B. Ba cạnh bằng nhau - C. Một góc bằng 600 - D. Một góc bằng 900
a/ Tổng ba góc của một tam giác bằng ……………………………………………………………………………..
b/ Tam giác ABC cân tại A có góc B = 650 thì góc A bằng …………………………………………………………
c/ Tam giác ABC vuông tại A theo định lí Pitago ta có …………………………………………………………….
d/ Dấu hiệu là ………………………………………………………………………………………………………………………
e/ Tần số là………………………………………………………………………………………………………………………….
f/ Công thức tính số trung bình cộng …………………………………………………………………………..
a: 180 độ
b: 50 độ
c: \(BC^2=AB^2+AC^2\)
Biết tam giác ABC vuông tại A thì B+C bằng:
A.90 độ
B.30 độ
C.60 độ
D.45 độ
Vẽ tam giác ABC vuông tại A , góc B = a biết : a) tan a = 2 , b)tan a bằng 3/5
Cho tam giác ABC vuông tại A. Hãy tính tan C biết rằng tan B = 4
A. tan C = 1 4
B. tan C = 4
C. tan C = 2
D. tan C = 1 2
Vì tam giác ABC vuông tại A nên B ^ + C ^ = 90 o
=> cot C = tan B = 4
Mà cot C. tan C = 1 => tan C = 1 4
Đáp án cần chọn là: A
Câu 1. Tam giác ABC cân tại B có
0 B 40 thì A bằng:
A) 400 B) 70
0 C) 60
0 D) 50
0
Câu 2. Tam giác AED có AD2 = DE2 - AE2thì tam giác AEDA) vuông tại E B) vuông tại D C) vuông tại A D) không vuôngCâu 3. Cho tam giác ABC và tam giác có ba đỉnh D; E; F, biết AB = EF, B =F . Cần thêm điềukiện gì để hai tam giác bằng nhau theo trường hợp: góc - cạnh - góc?A) AC = FD B) A =F C) C=E D) A=ECâu 4. Cho tam giác DEF vuông cân tại D, có DE=3cm thì EF bằng:A) 18cm B) 12cm C) 12 cm D) 18 cm
II. BÀI TẬP TỰ LUẬN (8 điểm)Cho tam giác ABC có
0 A 90 và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MB
lấy điểm D sao cho MD = MB. 1) Chứng minh ABM = CDM từ đó chứng minh AB=CD và AB //
Câu 1: B
Câu 2:Sửa đề: \(AD^2=DE^2+AE^2\)
=> Chọn A
Câu 3: Chọn D
Câu 4: \(EF=3\sqrt{2}cm\)
cho tam giác ABC vuông tại A, đội dài 3 cạnh AB=c,AC=b,BC=a gọi abc = ∝. so sánh a) tan ∝ với sin ∝/ cot ∝ b) cot ∝ với cos ∝ /sin ∝ c) tan ∝ × cot ∝ với 1
b: \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
Cho tam giác ABC vuông tại A a) chứng minh tanB + cosB lớn hơn bằng 2 b) Khi sinB + cosB=căn 2 . Hãy tính góc B c) H là trung điểm AB, đường thẳng qua H vuông góc với BC tại I và cắt tia AC tại K. Chứng minh tan C x tan BKC =2
Cho tam giác ABC vuông tại A
a) chứng minh tanB + cosB lớn hơn bằng 2
b) Khi sinB + cosB=căn 2 . Hãy tính góc B
c) H là trung điểm AB, đường thẳng qua H vuông góc với BC tại I và cắt tia AC tại K. Chứng minh tan C x tan BKC =2
Cho tam giác ABC vuông tại C, BC = 12cm, AC = 9cm. Tính sin A, cos B, tan A và cot B
Áp dụng định lý Pitago:
\(AB=\sqrt{BC^2+AC^2}=15\left(cm\right)\)
\(sinA=\dfrac{BC}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(cosB=\dfrac{BC}{AB}=\dfrac{4}{5}\)
\(tanA=\dfrac{BC}{AC}=\dfrac{12}{9}=\dfrac{4}{3}\)
\(cotB=\dfrac{BC}{AC}=\dfrac{4}{3}\)
Áp dụng định lí Pytago vào ΔABC vuông tại C, ta được:
\(AB^2=CA^2+CB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Xét ΔABC vuông tại C có
\(\sin\widehat{A}=\dfrac{CB}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\cos\widehat{B}=\dfrac{CB}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\tan\widehat{A}=\dfrac{CB}{CA}=\dfrac{12}{9}=\dfrac{4}{3}\)
\(\cot\widehat{B}=\dfrac{CB}{CA}=\dfrac{12}{9}=\dfrac{4}{3}\)