Biết: f(x-2)=2x-3
Tính f(x)
cho các hàm số
a, y=f(x)= 3x^2+x+1
tính f(1) f(-1\3) f(2\3) f(-2) f(-4\3)
b, y=f(x)= |2x-9|-3
tính f(2\3) f(-5\4) f(-5) f(4) f(-3\8)
c, y=2x^2-7 lập bảng các 9 trị tương ứng của y khi
x=0 x=-3 x= -1\2 x=2\3
\(a,f\left(1\right)=3\cdot1^2+1+1=5\\ f\left(-\dfrac{1}{3}\right)=3\cdot\left(-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+1=\dfrac{1}{3}-\dfrac{1}{3}+1=1\\ f\left(\dfrac{2}{3}\right)=3\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{3}+1=\dfrac{4}{3}-\dfrac{2}{3}+1=\dfrac{5}{3}\\ f\left(-2\right)=3\cdot\left(-2\right)^2-2+1=11\\ f\left(-\dfrac{4}{3}\right)=3\cdot\left(-\dfrac{4}{3}\right)^2-\dfrac{4}{3}+1=\dfrac{16}{3}-\dfrac{4}{3}+1=5\)
\(b,f\left(\dfrac{2}{3}\right)=\left|2\cdot\dfrac{2}{3}-9\right|-3=\dfrac{23}{3}-3=\dfrac{14}{3}\\ f\left(-\dfrac{5}{4}\right)=\left|2\cdot\left(-\dfrac{5}{4}\right)-9\right|-3=\dfrac{23}{2}-3=\dfrac{17}{2}\\ f\left(-5\right)=\left|2\left(-5\right)-9\right|-3=19-3=16\\ f\left(4\right)=\left|2\cdot4-9\right|-3=1-3=-2\\ f\left(-\dfrac{3}{8}\right)=\left|2\cdot\left(-\dfrac{3}{8}\right)-9\right|-3=\dfrac{39}{4}-3=\dfrac{27}{4}\)
\(c,x=0\Rightarrow y=2\cdot0^2-7=-7\\ x=-3\Rightarrow y=2\cdot\left(-3\right)^2-7=11\\ x=-\dfrac{1}{2}\Rightarrow y=2\cdot\left(-\dfrac{1}{2}\right)^2-7=\dfrac{-13}{2}\\ x=\dfrac{2}{3}\Rightarrow y=2\cdot\left(\dfrac{2}{3}\right)^2-7=-\dfrac{55}{9}\)
Cho hàm số f(x) thỏa mãn: 2f(x) - 3f(\(\dfrac{1}{x}\)) = 4x+3
Tính f(2)
thay x=2 và x=1/2 ta có
\hept⎧⎪⎨⎪⎩f(2)+3f(12)=4f(12)+3f(2)=14⇒f(2)=−1332
Cho hàm sô y = f(x) = 2x -3.
Tìm x biết: f(x) = 0; f(x)= 1, f(x) = -3/2; f(x) = 2022.
Ta có: \(y=f\left(x\right)=2x-3\)
\(f\left(x\right)=0\Rightarrow2x-3=0\Rightarrow x=\dfrac{3}{2}\)
\(f\left(x\right)=1\Rightarrow2x-3=1\Rightarrow x=2\)
\(f\left(x\right)=-\dfrac{3}{2}\Rightarrow2x-3=-\dfrac{3}{2}\Rightarrow x=\dfrac{3}{4}\)
\(f\left(x\right)=2022\Rightarrow2x-3=2022\Rightarrow x=\dfrac{2025}{2}\)
Tìm f(x) và g(x) biết hệ sau f(3x-1)+g(6x-1)=3x f(x+1)+x^2(2x+3)=2x^2+x
tìm f(x) và g(x) biết:
T(x) =f(x)+g(x)= 5x^2 -2x+3 và H(x)= f(x)-g(x) =x^2 -2x+5
T(x) = f(x) + g(x) = 5x2 - 2x + 3 (1)
H(x) = f(x) - g(X) = x2 - 2x + 5 (2)
Lấy (1) cộng (2) theo vế ta có
f(x) + g(x) + f(x) - g(x) = 5x2 - 2x + 3 + x2 - 2x + 5
=> 2.f(x) = 6x2 - 4x + 8
=> f(x) = 3x2 - 2x + 4
Thay f(x) vào (1) ta có
f(x) + g(x) = 5x2 - 2x + 3
=> (3x2 - 2x + 4) + g(x) = 5x2 - 2x + 3
=> g(x) = 5x2 - 2x + 3 - 3x2 + 2x - 4
=> g(x) = 2x2 - 1
Vậy f(x) = 3x2 - 2x + 4 ; g(x) = 2x2 - 1
a , biết f(x)=(2x-1) x f(x-2) với x > 0,5 tính f(6) , f(8) nếu f(0) = -2
f(6)=12, f(8)= 5 xem thêm lời giải ở đây nhé https://cunghocvui.com/danh-muc/toan-lop-10
: Cho hàm số y = f(x) = -2x + 3.
a) Tính f(-2); f(0); f(-\(\dfrac{1}{2}\)). b) Tìm các giá trị của x biết : f(x) = 5 ; f(x) = 1
a) Cho hàm số y = f(x) = -2x + 3.
Ta có: f(-2)= -2.(-2)+3
= 4+3=7
Ta có: f(0)= -2.0+3
= 0+3=3
Ta có: f(
Lời giải:
a.
$f(-2)=(-2)(-2)+3=7$
$f(0)=(-2).0+3=3$
$f(\frac{-1}{2})=(-2).\frac{-1}{2}+3=4$
b.
$f(x)=-2x+3=5$
$\Rightarrow -2x=2$
$\Rightarrow x=-1$
$f(x)=-2x+3=1$
$\Rightarrow -2x=1-3=-2$
$\Rightarrow x=1$
Bài 3: Tìm x để f(x) chia hết cho g(x) biết a) f(x)=x² -2x² + x+3; g(x) = x-1 b) f(x) =-2x +x +3x-4; g(x) = x+2
a: \(\Leftrightarrow x^3-x^2-x^2+x+3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{-1;1;3;-3\right\}\)
hay \(x\in\left\{0;2;4;-2\right\}\)
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?
Cho f(x) là đa thức bậc hai, biết f(0)=2; f(x)-f(x-1)=2x-6. Xác định đa thức f(x)
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$