Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
an thanh thien
Xem chi tiết
Nguyễn Anh Quân
4 tháng 3 2018 lúc 21:16

+, Nếu p khác 3 thì p ko chia hết cho 3

=> p^2 chia 3 dư 1

=> p^2+2 chia hết cho 3

Mà p^2+2 > 3 => p^2+2 là hợp số 

=> ko t/m

=> p = 3

=> p^3+2 = 3^3+2 = 29 là số nguyên tố

=> ĐPCM

Tk mk nha

Ngo Tung Lam
4 tháng 3 2018 lúc 21:41

*) \(p=2\) thì \(p^2+2=6\) ( loại vì 6 không phải là số nguyên tố 

*) \(p=3\) thì \(p^2+2=11\) ( chọn vì 11 là số nguyên tố )

\(\Rightarrow\)\(p^3+2=3^3+2=29\) ( là số nguyên tố )

*) \(p>3\)

\(p\) là số nguyên tố \(\Rightarrow\)\(p\)không chia hết cho 3 ( 1 )

\(p\inℤ\)\(\Rightarrow\)\(p^2\) là số chính phương ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(p^2\) : 3 dư 1 

\(\Rightarrow p^2+2⋮3\)( 3 )

Mặt khác \(p>3\)

\(\Rightarrow p^2>9\)

\(\Rightarrow p^2+2>11\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra : \(p^2+2\)không là số nguyên tố ( trái với đề bài )

Xem chi tiết
White Ways
Xem chi tiết
Lê Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 14:15

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

Nguyễn Thị Thùy Liên
Xem chi tiết
Hà Đăng Thuận
Xem chi tiết
Lê Ngọc Anh
Xem chi tiết
Hoàng Đức Mạnh
Xem chi tiết
fgdjgf dzbgvg
Xem chi tiết
Tran Thi Hong
21 tháng 11 2019 lúc 20:01
(n-4) chia hết cho (n+1)
Khách vãng lai đã xóa