số p khi chia cho 3 có số dư là 1 hoặc 2 hoặc 0=>p có 3 dạng là 3k+1,3k,3k+2.
nếu p=3k=>p=3 thì p^2+8=9+8=17 và p^2+2=9+2=11 đều là số nguyên tố(thỏa mãn)
nếu p=3k+1 thì:
p- 1(mod3)
=>p^2- 1^2-1(mod3)
=> p^2 chia 3 dư 1=> p^2 có dạng là 3q+1 ta có3q+1+8=3q+9 chia hết cho 3, q thuộc N loại
nếu p=3k+2 thì :
p- 2=>p^2 - 2^2 -- 1 (mod 3)
=> p^2 chia 3 dư 1 => p^2 có dạng là 3c+1 ta có3c+1+8=3q+9 chia hết cho 3, c thuộc N loại
Vậy chỉ với p=3 thì thỏa mãn đầu bài