Cho hệ phương trình: ax + y = 2 6 x + b y = 4 . Có bao nhiêu cặp số nguyên a , b để hệ phương trình vô nghiệm?
A. 7
B. 5
C. 6
D. 8
Cho hệ phương trình − a x + y = 3 x + 1 + y = 2 . Giá trị của a để hệ phương trình có nghiệm duy nhất là?
A. − 2 ≤ a ≤ 1
B. a > 1 a < − 1
C. −2 < a < 1
D. a ≥ 1 a < − 2
Ta có − a x + y = 3 x + 1 + y = 2
⇔ y = a x + 3 | x + 1 | + a x + 3 = 2 ⇔ y = a x + 3 | x + 1 | + a x + 1 = 0
Nếu x ≥ − 1 ta có x + 1 + ax + 1 = 0 ⇒ x(a + 1) = −2 (1)
Phương trình (1) có nghiệm duy nhất ⇔ a ≠ −1 x = − 2 a + 1 ⇒ y = a + 3 a + 1
x ≥ − 1 ⇔ − 2 a + 1 ≥ − 1 ⇔ − 2 a + 1 + 1 ≥ 0 ⇔ a − 1 a + 1 ≥ 0 ⇔ a − 1 a + 1 ≥ 0 a ≠ − 1 ⇔ a ≥ 1 a < − 1
Nếu a < −1 ta có –x – 1 + ax + 1 = 0 ⇒ (a – 1)x = 0 (2)
Nếu a = 1 thì (2) là 0x = 0 đúng với mọi x < −1 nên (2) có vô số nghiệm hay hệ đã cho có vô số nghiệm (loại)
Nếu a ≠ 1 thì (2) có nghiệm duy nhất x = 0 (loại so x < −1). Do đó (2) vô nghiệm khi a ≠ 1
Để hệ phương trình đã cho có nghiệm duy nhất thì có 2 trường hợp:
Trường hợp 1: Phương trình (1) vô nghiệm và phương trình (2) có nghiệm duy nhất
Trường hợp này không xảy ra vì (2) chỉ có thể vô nghiệm hoặc vô số nghiệm
Trường hợp 2: Phương trình (1) có nghiệm duy nhất và phương trình (2) vô nghiệm ⇔ a ≥ 1 a < − 1 a ≠ 1 ⇔ a > 1 a < − 1
Đáp án:B
Cho hệ phương trình {x +ax = 3
ax - y = 2
a, giải hệ phương trình khi a =2
b,Tìm a để hệ phương trình có nghiệm thoả mãn x + y > 0
c,Tìm a để hệ phương trình có nghiệm thoả mãn x = √2 . y
Từ hệ được x+y=1
a)Thay vào được x=1;y=0
b)Với mọi a
c)Thay vào x+y=1 tìm x;y
Thay ngược vào hệ tìm a
a) Khi a = 2 hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}x+2x=3\left(1\right)\\2x-y=2\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=3\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2.1-2=0=y\end{cases}}\)
Do vậy \(\left(x;y\right)=\left(1;0\right)\)
b) Ta có: \(x+y=\left(x+ax\right)-\left(ax-y\right)=3-2=1>0\forall a\)
c) Lấy (1) trừ (2),vế với vế,ta có: \(x+y=1\)
Thay vào,ta có: \(\sqrt{2}.y+y=1\Leftrightarrow y\left(\sqrt{2}+1\right)=1\)
\(\Rightarrow y=\frac{1}{\sqrt{2}+1}\Rightarrow x=1-\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}}{\sqrt{2}+1}\)
Thay vào hệ phương trình ban đầu,ta có: \(\hept{\begin{cases}\frac{\sqrt{2}}{\sqrt{2}+1}+\frac{\sqrt{2}}{\sqrt{2}+1}.a=3\left(3\right)\\\frac{\sqrt{2}}{\sqrt{2}+1}.a-\frac{\sqrt{1}}{\sqrt{2}+1}=2\left(4\right)\end{cases}}\)
Lấy (3) + (4),vế với vế,ta có: \(\frac{2\sqrt{2}}{\sqrt{2}+1}.a=5\Leftrightarrow a=\frac{10+5\sqrt{2}}{4}\)
Cho hệ phương trình:\(\left\{{}\begin{matrix}\left(a+1\right)x-y=3\\ax+y=a\end{matrix}\right.\) giải hệ phương trình khi a = \(-\sqrt{2}\)
Thay \(a=-\sqrt{2}\) vào pt :
\(\left\{{}\begin{matrix}\left(-\sqrt{2}+1\right)x-y=3\left(1\right)\\-\sqrt{2}x+y=-\sqrt{2}\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right):\)
\(\left(-\sqrt{2}+1-\sqrt{2}\right)x=3-\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{3-\sqrt{2}}{1-2\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{1-5\sqrt{2}}{7}\)\(\left(3\right)\)
Thay \(\left(3\right)\) vào \(\left(2\right)\) : \(-\sqrt{2}.\dfrac{1-5\sqrt{2}}{7}+y=-\sqrt{2}\)
\(\Rightarrow y=\)\(-\sqrt{2}+\dfrac{6\sqrt{2}}{7}\)
\(\Rightarrow y=-\dfrac{\sqrt{2}}{7}\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{1-5\sqrt{2}}{7};-\dfrac{\sqrt{2}}{7}\right)\)
Cho hệ phương trình \(\begin{cases} ax-y=2\\ x+ay=3 \end{cases} \). Tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
- Để hệ phương trình có nghiệm duy nhất
\(\Leftrightarrow\dfrac{a}{1}\ne-\dfrac{1}{a}\)
\(\Leftrightarrow a^2\ne-1\) ( Luôn đúng )
Vậy mọi a thuộc R hệ phương trình luôn có 1 nghiệm duy nhất .
- Ta có : \(\left\{{}\begin{matrix}y=ax-2\\x+a\left(ax-2\right)=3\end{matrix}\right.\)
- Từ PT ( II ) => \(x+xa^2-2a=3\)
\(\Rightarrow x=\dfrac{2a+3}{a^2+1}\)
- Thay lại x vào PT ( I ) ta được : \(y=\dfrac{a\left(2a+3\right)}{a^2+1}-2\)
\(=\dfrac{2a^2+3a-2a^2-2}{a^2+1}=\dfrac{3a-2}{a^2+1}\)
Vậy ...
Cho hệ phương trình: 2 x − y = 2 − a x + 2 y = a + 1 . Giá trị thích hợp của tham số a để tổng bình phương nghiệm của hệ phương trình đạt giá trị nhỏ nhất.
A. a = 1
B. a = − 1
C. a = 1 2
D. a = − 1 2
Ta có: D = 2 − 1 1 2 = 5 ≠ 0
Vì D ≠ 0 nên hệ phương trình có nghiệm duy nhất
x = D x D = 5 − a 5 ; y = D y D = 3 a 5
Khi đó:
x 2 + y 2 = 5 − a 5 2 + 3 a 5 2
= 25 − 10 a + 10 a 2 25 = 10 25 a 2 − a + 1 = 2 5 a − 1 2 2 + 9 10 ≥ 9 10
Dấu “=” xảy ra ⇔ a = 1 2
Đáp án cần chọn là: C
Cho hệ phương trình: x+ay=2 và ax-27=1. Tìm các giá trị của a để hệ phương trình đã cho có nghiệm thỏa mãn điều kiện x>0, y<0.
Cho hệ phương trình\(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) . Tìm tất cả các giá trị của tham số m để hệ phương trình duy nhất.
Cho hệ phương trình (a+1)x-y=a ax+y=a ( a là tham số) Tìm a để hệ phương trình có nghiệm duy nhất (x;y) sao cho x+y>0
Cho hệ phương trình (a+1)x-y=3 và ax+y=a ( a là tham số) .Tìm a để hệ phương trình có nghiệm duy nhất (x;y) sao cho x+y>0