Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Vũ
Xem chi tiết
IS
22 tháng 2 2020 lúc 12:37

 720 : ( x . 2 + x . 3 ) = 3.2
720 : ( x . 2 + x.3 ) = 6
( x .2 + x.3 )           = 720 : 6 
x.2+x.3 = 120
x . ( 2 + 3 ) = 120
x . 5 = 120
     x     = 120 : 5 
    x      = 24

Khách vãng lai đã xóa
Trương Nguyên Đại Thắng
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2021 lúc 21:43

\(\Leftrightarrow c-a=\dfrac{b}{a}-\dfrac{1}{b}=\dfrac{b^2-a}{ab}\)

\(\Rightarrow b^2-a=ab\left(c-a\right)\Rightarrow b^2=a\left[b\left(c-a\right)+1\right]\)

\(\Rightarrow b^2⋮b\left(c-a\right)+1\) (1)

Nếu \(b\left(c-a\right)+1\ne1\) , do b và \(b\left(c-a\right)+1\) nguyên tố cùng nhau

\(\Rightarrow b⋮̸b\left(c-a\right)+1\Rightarrow b^2⋮̸b\left(c-a\right)+1\) trái với (1)

\(\Rightarrow b\left(c-a\right)+1=1\Rightarrow c=a\)

\(\Rightarrow b^2=a\Rightarrow ab=b^3\) là lập phương 1 số tự nhiên

Đỗ Xuân Lộc
Xem chi tiết
Nguyễn Tiến Dũng
6 tháng 3 2017 lúc 20:59

Viết như thế ai nhìn thấy

Công chúa họ Nguyễn
7 tháng 3 2017 lúc 17:15

Nguyễn Tiến Dũng nói như z đứng đó k nhìn thấy làm sao mà làm đc bn ơi

Nguyễn Măng
Xem chi tiết
Cao Thanh Tú
Xem chi tiết
piojoi
Xem chi tiết
meme
4 tháng 9 2023 lúc 15:43

Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.

Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.

Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.

Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.

Châu
Xem chi tiết
Đoàn Tịnh Lâm
16 tháng 12 2024 lúc 23:35

có thể coi a=b=c=d từ đó thì ra 2 nghiệm đều thỏa mãn biểu thức là:

x = {-2;2}

๖ۣۜTina Ss
Xem chi tiết
Nguyễn Ngọc Lộc
19 tháng 6 2020 lúc 15:00

Ta có : \(\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)

=> \(\left(x^2-7x+3x-21\right)\left(x^2-6x+2x-12\right)=m\)

=> \(\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)

- Đặt \(x^2-4x=a\) ta được phương trình :

\(\left(a-21\right)\left(a-12\right)=m\)

=> \(a^2-21a-12a+252-m=0\)

=> \(a^2-33a+252-m=0\)

=> \(\Delta=b^2-4ac=\left(-33\right)^2-4\left(252-m\right)=81+4m\)

Lại có : \(x^2-4x=a\)

=> \(x^2-4x-a=0\) ( I )

- Để phương trình ( I ) có 4 nghiệm phân biệt

<=> Phương trình ( II ) có hai nghiệm phân biệt

<=> \(\Delta>0\)

<=> \(m>-\frac{81}{4}\)

Nên phương trình có hai nghiệm phân biệt :

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{33-\sqrt{81+4m}}{2}\\x_2=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\)

=> Ta được phương trình ( I ) là :

\(\left\{{}\begin{matrix}x^2-4x+\frac{\sqrt{81+4m}-33}{2}=0\\x^2-4x-\frac{\sqrt{81+4m}+33}{2}=0\end{matrix}\right.\)

- Theo vi ét : \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\frac{33-\sqrt{81+4m}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_3+x_4=4\\x_3x_4=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\end{matrix}\right.\)

- Để \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

<=> \(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)

<=> \(\frac{4}{\frac{33-\sqrt{81+4m}}{2}}+\frac{4}{\frac{33+\sqrt{81+4m}}{2}}=4\)

<=> \(\frac{1}{\frac{33-\sqrt{81+4m}}{2}}+\frac{1}{\frac{33+\sqrt{81+4m}}{2}}=1\)

<=> \(\frac{2}{33-\sqrt{81+4m}}+\frac{2}{33+\sqrt{81+4m}}=1\)

<=> \(\frac{2\left(33-\sqrt{81+4m}\right)+2\left(33+\sqrt{81+4m}\right)}{\left(33-\sqrt{81+4m}\right)\left(33+\sqrt{81+4m}\right)}=1\)

<=> \(66-2\sqrt{81+4m}+66+2\sqrt{81+4m}=1089-81-4m\)

<=> \(66+66=1089-81-4m\)

<=> \(m=219\)