\(4^{x+1}=64^x\)
a,|x|-7/6=9/15
b,|x-4/3|=1/6
c,|x-4/3|-1/3=1/2
d,8/3-|7/9-x|=-1/5
e,|x-1/4^2|-25/64=0
f,(x-1/4)^2+17/64=21/32
a) \(\left|x\right|-\frac{7}{6}=\frac{9}{15}\)
=> \(\left|x\right|=\frac{9}{15}+\frac{7}{6}=\frac{53}{30}\)
=> \(\orbr{\begin{cases}x=\frac{53}{30}\\x=-\frac{53}{30}\end{cases}}\)
b) \(\left|x-\frac{4}{3}\right|=\frac{1}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{1}{6}\\x-\frac{4}{3}=-\frac{1}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{6}\end{cases}}\)
c) \(\left|x-\frac{4}{3}\right|-\frac{1}{3}=\frac{1}{2}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{1}{2}+\frac{1}{3}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{5}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{5}{6}\\x-\frac{4}{3}=-\frac{5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{6}\\x=\frac{1}{2}\end{cases}}\)
d) \(\frac{8}{3}-\left|\frac{7}{9}-x\right|=-\frac{1}{5}\)
=> \(\left|\frac{7}{9}-x\right|=\frac{43}{15}\)
=> \(\orbr{\begin{cases}\frac{7}{9}-x=\frac{43}{15}\\\frac{7}{9}-x=-\frac{43}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{94}{45}\\x=\frac{164}{45}\end{cases}}\)
e) \(\left|x-\left(\frac{1}{4}\right)^2\right|-\frac{25}{64}=0\)
=> \(\left|x-\frac{1}{16}\right|=\frac{25}{64}\)
=> \(\orbr{\begin{cases}x-\frac{1}{16}=\frac{25}{64}\\x-\frac{1}{16}=-\frac{25}{64}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{29}{64}\\x=-\frac{21}{64}\end{cases}}\)
f) \(\left(x-\frac{1}{4}\right)^2+\frac{17}{64}=\frac{21}{32}\)
=> \(\left(x-\frac{1}{4}\right)^2=\frac{25}{64}\)
=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{5}{8}\right)^2\)
=> \(\orbr{\begin{cases}x-\frac{1}{4}=\frac{5}{8}\\x-\frac{1}{4}=-\frac{5}{8}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{3}{8}\end{cases}}\)
rút gọn biểu thức A=(x+y)(x^2+y^2)(x^4+y^4)...(x^64+y^64) với x-y=1.
các bn lm giúp mk nhá.
\(A=1.\left(x+y\right)\left(x^2+y^2\right)...\left(x^{64}+y^{64}\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)...\left(x^{64}+y^{64}\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)...\left(x^{64}+y^{64}\right)\)
\(=\left(x^4-y^4\right)...\left(x^{64}+y^{64}\right)\)
\(=...=\left(x^{64}-y^{64}\right)\left(x^{64}+y^{64}\right)=x^{128}-y^{128}\)
1) \(4^{x+1}=64^x\)
2) \(\dfrac{x}{2}-\dfrac{x}{5}=1+x\)
\(1,\Rightarrow4^{x+1}=4^{3x}\\ \Rightarrow x+1=3x\\ \Rightarrow2x=1\\ \Rightarrow x=\dfrac{1}{2}\\ 2,\Rightarrow5x-2x=10+10x\\ \Rightarrow7x=-10\\ \Rightarrow x=-\dfrac{10}{7}\)
1. 4x + 1 = 64x
<=> 4x + 1 = 43x
<=> x + 1 = 3x
<=> 1 = 2x
<=> \(x=\dfrac{1}{2}\)
2. \(\dfrac{x}{2}-\dfrac{x}{5}=1+x\)
<=> \(\dfrac{5x}{10}-\dfrac{2x}{10}=\dfrac{10}{10}+\dfrac{10x}{10}\)
<=> 5x - 2x = 10 + 10x
<=> 5x - 2x - 10x = 10
<=> -7x = 10
<=> \(x=\dfrac{-10}{7}\)
bài 1 : Tìm x
a) 5 + ( x + 27 ) = 64
b) 64 - ( x - 2 ) = 25
c) 7 - ( x + 5 ) + 14 = 343
d) 5 . x - 25 = 10
e) 4 . ( x - 5 ) - 8 = 48
f) 49 - ( 15 + x ) = 12
g) 49 - 7. ( 13 - x ) = 14
h) 155 - 10. ( x + 1 ) = 55
5 + ( x + 27 ) = 64
( x + 27 ) = 64 - 5 ( x + 27 ) = 59 x = 59 - 27 x = 32a) \(\Rightarrow x+27=59\Rightarrow x=32\)
b) \(\Rightarrow x-2=39\Rightarrow x=41\)
c) \(\Rightarrow x+5=-322\Rightarrow x=-327\)
d) \(\Rightarrow5x=35\Rightarrow x=7\)
e) \(\Rightarrow4\left(x-5\right)=56\Rightarrow x-5=14\Rightarrow x=19\)
f) \(\Rightarrow15+x=37\Rightarrow x=22\)
g) \(\Rightarrow7\left(13-x\right)=35\Rightarrow13-x=5\Rightarrow x=8\)
h) \(\Rightarrow10\left(x+1\right)=100\Rightarrow x+1=10\Rightarrow x=9\)
Tìm x biết:
a, 2^x -15= 2^4+1
b, x+1/65+x+2/64=x+3/63+x+4/61
`a,`\(2^x -15= 2^4+1\)
`-> 2^x-15=17`
`-> 2^x=17+15`
`-> 2^x=32`
`-> 2^x=2^5`
`-> x=5`
`b,` Có phải đề là \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\) ?
`=>`\(\dfrac{x+1}{65}+1+\dfrac{x+2}{64}+1=\dfrac{x+3}{63}+1+\dfrac{x+4}{62}+1\)
`=>`\(\dfrac{x+1+65}{65}+\dfrac{x+2+64}{64}-\dfrac{x+3+63}{63}-\dfrac{x+4+62}{62}=0\)
`=>`\(\dfrac{x+66}{65}+\dfrac{x+66}{64}-\dfrac{x+66}{63}-\dfrac{x+66}{62}=0\)
`=>`\(\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}\right)=0\)
Mà `1/65+1/64-1/63-1/62 \ne 0`
`-> x+66=0`
`-> x=-66`
Tìm x biết:
a, 2^x -15= 2^4+1
b, x+1/65+x+2/64=x+3/63+x+4/61
a: =>2^x=2^4+16=32
=>x=5
b: Sửa đề: \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\)
=>\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+2}{64}+1\right)=\left(\dfrac{x+3}{63}+1\right)+\left(\dfrac{x+4}{62}+1\right)\)
=>x+66=0
=>x=-66
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
Tính nhanh:
Câu 1 : 2 x 31 x 12 + 4 x 46 x 42 + 8 x 27 x 3
Câu 2 : 36 x 28 + 36 x 82 + 64 x 69 + 64 x 41
Cài vào điện thoại phần mềm photo math, nó sẽ hỗ trợ bạn các tính nhanh luôn, cách dùng thid seach bác google hen.
bn ơi hãy lấy máy tính
mà tính đó bna j
tính thế này thì mất
mấy tiếng
Câu 1:2x31x12+4x46x42+8x27x3=9120
Câu 2 :........................................=12280
k and kb nha
(1/2)^x + (1/2)^x+4 = 17/64