Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PHẠM MẠNH QUÂN
Xem chi tiết
Tạ Duy Hưng
19 tháng 6 2021 lúc 13:58

   \(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

Khách vãng lai đã xóa
Khuất Huyền Leenh
Xem chi tiết
Đức Phạm
11 tháng 3 2017 lúc 10:31

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)\(\frac{1}{100}\)

A = \(1-\frac{1}{100}\)

A = \(\frac{100}{100}-\frac{1}{100}\)

A = \(\frac{99}{100}\)

Trà My
11 tháng 3 2017 lúc 10:27

\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{ 1}{3x4}+...+\frac{1}{99x100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

nguyen ngoc quynh
Xem chi tiết
Mạnh Lê
26 tháng 7 2017 lúc 19:05

Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{49}{100}\)

Đức Phạm
26 tháng 7 2017 lúc 19:00

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

Trần Phúc
27 tháng 7 2017 lúc 16:34

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

Tách ra ta sẽ được:

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\)

Sau khi đơn giản sẽ còn là:

\(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

lequanghuy
Xem chi tiết
dao nhat bao
Xem chi tiết
Trần Khánh Vân
10 tháng 4 2015 lúc 9:02

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{99\times100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{100-1}{100}\)

\(\frac{99}{100}\)

Naruto Cosplay
13 tháng 8 2016 lúc 19:35

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)
\(\frac{100-1}{100}\)
\(\frac{99}{100}\)

 

Phan Thị Thanh Huyền
5 tháng 2 2017 lúc 14:14

99/100

chu duc manh
Xem chi tiết
Kiệt Nguyễn
10 tháng 1 2019 lúc 13:16

\(\text{Đặt }A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{49}{100}\)

Tùng Nguyễn Quang
10 tháng 1 2019 lúc 13:18

1/2x3+1/3x4+....+1/99x100

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100

=1-1/100

=99/100

Chu Hoàng Quỳnh Anh
30 tháng 5 2023 lúc 19:07

49/100

ân
Xem chi tiết
Nguyễn Thế Bảo
31 tháng 3 2016 lúc 19:04

Bạn xem lời giải của mình nhé:

Giải: 

\(A=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(\frac{1}{2}<3\Rightarrow\frac{1}{2}-\frac{1}{100}<3\Rightarrow A<3\left(đpcm\right)\)

Chúc bạn học tốt!hihi

 

Lê Thế Dũng
31 tháng 3 2016 lúc 19:24

Nguyễn Thế Bảo ko phải toán chứng minh coppy đâu vậy banbucminh

Nguyễn Thế Bảo
31 tháng 3 2016 lúc 19:26

Mình có copy ở đâu đâu, cái này mình tự làm mà!

Chí Kiên Hoàng
Xem chi tiết
Nguyễn Thanh Hằng
9 tháng 5 2017 lúc 10:53

Ta có :

\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+..............+\dfrac{1}{99.100}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)

lại anh minh
10 tháng 8 2019 lúc 8:43

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

Lưu Linh Ly
Xem chi tiết
soyeon_Tiểu bàng giải
22 tháng 7 2016 lúc 22:10

\(P=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)

\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)