Cho tam giác ABC, điểm M thuộc cạnh BC sao cho M B M C = 1 2 . Đường thẳng đi qua M và song song với AC cắt AB ở D. Đường thẳng đi qua M và song song với AB cắt AC ở E. Tỉ số chu vi hai tam giác ΔDBM và ΔEMC là
A. 1 2
B. 1 3
C. 2 3
D. 1 4
cho tam giác đều ABC, điểm M trong tam giác sao cho MA=1, MC=2, BM là độ dài cạnh hình vuông có diện tích là 3. Lấy điểm D thuộc nửa mặt phẳng bờ BC không chứa A sao cho tam giác CMD là tam giác đều
a/ C/m tam giác CAM=CBD
b/ C/m tam giác MDB vuông
c/ C/m 3 điểm A,M,D thẳng hàng
d/ Tính diện tích hình vuông có cạnh BC
Cho tam giác ABC và điểm M thuộc cạnh AC ( M khác A, C ). Tìm tập hợp những điểm N trên cạnh BC sao cho tam giác ABC có diện tích bằng k lần diện tích tam giác MNC ( với k>1)
1.cho tam giác ABC có BC=2AB. M là trung điểm của BC, D là trung điểm của BM.TRên tia AD lấy điểm E sao cho AE=2AD. C/m: a, tam giác MAE=tam giác MAC b, AC=2AD
2.cho tam giác ABC đều. D thuộc BC sao cho BC=3BD.Vẽ DE vuông góc với BC(E thuộc AB) DF vuông góc với AC( F thuộc AC). C/m tam giác DEF đều.
3. Cho tam giác ABC cân tại A.D thuộc AB. E thuộc AC sao cho AD=AE. O là giao điểm của BE và CD. C/m
a,BE=CD b, DE song song với BC
bai tinh chat tia phan giac cua mot goc
cho hình tam giác abc. trên cạnh ab lấy điểm m sao cho am = 1/4 ab, trên cạch bc lấy điểm m sao cho BN =2/3 BC. Nối M với C, trên cạnh MC lấy điểm P sao cho MP = 2/3 MC. Biết diện tích tam giác NPC bằng 5cm2. Tính diện tích tam giác ABC
Cho tam giác ABC có điểm M thuộc cạnh BC sao cho tam giác ABC = tam giác AMC. Chứng minh rằng:
a) M là trung điểm của BC
b) AM là tia phân giác của góc A
c) AM vuông góc với BC
b) c/m BD vuông góc AE tại trung điểm I của AE
c) kẻ AH vuông góc BC ( H thuộc BC ) . C/m AH // DE
d) so sánh góc ABC và góc EDC
e) gọi K là giao điểm ED và BA , M là trung điểm của KC . C/m B,D,M thẳng hàng
Đề khó quá nên nhờ mọi người nha
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
Cho tam giác ABC (GÓc B >Góc C).Lấy điểm O thuộc cạnh AC sao cho OB =OC và lấy A' là tia đối của OB sao cho OA =OA'.
a)C/m Tam giacs ABC=tam giác A'CB
b)c/m tam giác AA'C=AA'B
c)AA'//BC
a) Xét tam giác AOB và tam giác A'OC có OB=OC(GT) OA'=OA (gt) AOB=A'OC ( đ đ) =>tam giác AOB= TG A'OC tg BOC là TG chung(gt) tg BOC +TG A'OC= tg A'BC tgBOC+tgAOB=tgABC =>tg ABC=tgA'CB
Cho tam giác ABC (GÓc B >Góc C).Lấy điểm O thuộc cạnh AC sao cho OB =OC và lấy A' là tia đối của OB sao cho OA =OA'.
a)C/m Tam giacs ABC=tam giác A'CB
b)c/m tam giác AA'C=AA'B
c)AA'//BC
Cho tam giác ABC (GÓc B >Góc C).Lấy điểm O thuộc cạnh AC sao cho OB =OC và lấy A' là tia đối của OB sao cho OA =OA'.
a)C/m Tam giacs ABC=tam giác A'CB
b)c/m tam giác AA'C=AA'B
c)AA'//BC
Cho tam giác ABC (GÓc B >Góc C).Lấy điểm O thuộc cạnh AC sao cho OB =OC và lấy A' là tia đối của OB sao cho OA =OA'.
a)C/m Tam giacs ABC=tam giác A'CB
b)c/m tam giác AA'C=AA'B
c)AA'//BC
a: Xét ΔAOB và ΔA'OC có
OA=OA'
\(\widehat{AOB}=\widehat{A'OC}\)
OB=OC
Do đó: ΔAOB=ΔA'OC
Suy ra: AB=A'C
Xét ΔABC và ΔA'CB có
AB=A'C
BC chung
AC=A'B
Do đó: ΔABC=ΔA'CB