a,Chứng tỏ rằng a^2 lớn hơn a;-a^2 nhỏ hơn hoặc bằng 0
b,Tìm giá trị nhỏ nhất của biểu thức (a-1)^2+2009
cho ab và a lớn hơn b chứng tỏ rằng a2 lớn hơn b2 và a3 lớn hơn b3
Cho a thuộc z. Chứng tỏ rằng a2 lớn hơn hoặc bằng 0; -a^2 bé hơn hoặc bằng 0
Vì a \(\inℤ\)nên có 2 trường hợp
TH1 : a là số nguyên âm
\(\Rightarrow\)a có dạng là (-b)
Mà (-b)2 = (-b).(-b) = b.b - là số nguyên dương
Nên a2 \(\ge\)0
TH2 : a là số nguyên dương
\(\Rightarrow\)a2 là số nguyên dương
Nên a2 \(\ge\)0
_HT_
( Cho hỏi -a2 hay là (-a)2 ạ ? )
cho a ∈ Z. chứng tỏ rằng a2 lớn hơn hoặc bằng 0; -a2 bé hơn hoặc bằng 0
CMR : a2 lớn hơn hoặc bằng 0
Nếu a là 0 thì a2 = 0
Nếu a ∈ N* thì a2 > 0
☛ Vậy a ∈ N thì a2 ≥ 0
CMR : -a2 bé hơn hoặc bằng 0
Nếu a là 0 thì -a2 = 0
Nếu a ∈ N* thì -a2 < 0
☛ Vậy a ∈ N thì -a2 ≤ 0
*Trường hợp 1: a≠0
Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)
Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)
*Trường hợp 2: a=0
Ta có: \(a^2=0^2=0\)
Do đó, \(a^2=0\forall a=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
\(-a^2\le0\forall a\)
Chứng tỏ rằng |a|+|b| lớn hơn hoặc bằng |a+b|
Câu hỏi của Nguyễn Văn Bình
Nhấn vào link đó!
Chúc bạn học tốt!!!
Ta có : | a+ b| = ( +a ) + ( +b) = | a + b |
Mà |a + b| = | a + b |
=> | a| + |b| = | a+b | ( ĐPCM )
Điều cần chứng minh:
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a+b\right|=\left|a+b\right|\)
Khi này ,a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0
\(\left\{{}\begin{matrix}\left|a\right|\ge0\\\left|b\right|\ge0\end{matrix}\right.\)
Nên chúng chỉ có nhận giá trị lớn hơn or bằng 0
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a+b\right|\rightarrowđpcm\)
Chứng tỏ rằng |a|+|b| lớn hơn hoặc bằng |a+b|
Ta thấy :
|a| + |b| = ( +a ) + ( +b) = | a+b | = | a+b | => ĐPCM
Cho a, b là số tự nhiên khác 0, chứng tỏ rằng
a) a/b+b/a lớn hơn hoặc bằng 2
b) (a+b)×(1/a+1/b) lớn hơn hoặc bằng 4
1. Cho a,b,c,d là các số tự nhiên khác 0 và a/b bé hơn c/d . Chứng tỏ rằng a * d bé hơn b * c.
2. Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ rằng :
a). a/a+b + b/b+c + c/c+a lớn hơn 1
b). b/a+b + c/b+c + a/c+a bé hơn 2
Các bạn nhớ ghi lời giải chi tiết nhé !
với a,m lớn hơn hoặc bằng 2 ta sẽ chứng tỏ rằng \(\frac{1}{a^m}< \frac{a-1}{a^m-a}\)
chứng tỏ rằng nếu a phần b nhỏ hơn c phần d (b lớn hơn 0, đ lớn hơn 0 ) thì a phần b nhỏ hơn a + c phần b+d nhỏ hơn c phần d
Ta có a/b<c/d
=> ad<bc
=>ad+ab<bc+ab
=> a(b+d)<b(c+a)
=>a/b<a+c/b+d
Lại có ad<bc
=> ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d
bạn ơi tại sao lại là thế mik tưởng là a nhân b cộng a nhân d chứ