Bài 1 : Cho các số thực a,b,c khác 0 thỏa mãn \(\frac{4bz-5cy}{3a}=\frac{5cx-3az}{4b}=\frac{3ay-4bx}{5c}\)
Chứng minh rằng : \(\frac{x}{3a}=\frac{y}{4b}=\frac{z}{5c}\)
Giúp mk đi chìu 1h đi học rồi !!
Cho a,b thuộc n* thỏa mãn 3a^2+a-b=4b^2 Chứng minh rằng a-b và 3a+3b+1 là số chính phương
cho a,b thỏa mãn 3a+4b=5. Chứng minh rằng a^2+b^2>=1
\(a^2+b^2=\frac{9a^2}{9}+\frac{16b^2}{16}\ge\frac{\left(3a+4b\right)^2}{9+16}=\frac{5^2}{25}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3a}{9}=\frac{4b}{16}=\frac{3a+4b}{9+16}=\frac{5}{25}=\frac{1}{5}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{5}\\b=\frac{4}{5}\end{cases}}\)
1) Tính giá trị của biểu thức 4a-b/3a+3 + 4b-a/3b+3 với a-b=3; a khác 1; b khác 1
2) cho đa thức f(x)= ax^2+bx+c thỏa mãn f(3)=f(-3).
Chứng minh rằng f(x)=f(-x)
Giup minh vs a!minh dang can gap a
Câu 2:
f(3)=f(-3)
=>9a+3b+c=9a-3b+c
=>6b=0
hay b=0
=>f(x)=ax2+c
=>f(x)=f(-x)
cho a,b,c khác 0 thỏa mãn 2ab=c^2,ac=4b^2.Tính giá trị biểu thức 5a+4b+3c/3a+2b+c
cho a,b,b khác 0 thoả mãn: a*b*c=24 và 3a+ 4b + 6c =48/a +6/b+24/c Chứng minh rằng (a-4)*(b-3)*(c-2) HELP ME 10.20p nọp bài ạ
Cho a,b,c là các số thực thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\left(3a+4b+5c\right)^2\ge44\left(ab+bc+ca\right)\)
Từ giả thiết a+b+c=1 suy ra: c=1-a-b, thay vào bất đẳng thức ta được
(3a+4b+5-5a-5b)2\(\ge\)44ab+44(a+b)(1-a-b)
<=> 48a2+16(3b-4)a+45b2-54b+25\(\ge0\)
Xét \(f\left(a\right)=48a^2+16\left(3b-4\right)a+45b^2-54b+25\), khi đó ta được
\(\Delta'=64\left(3b-4\right)^2-48\left(45b^2-54b+25\right)=-176\left(3b^2-1\right)\le0\)
Do đó suy ra: f(a) \(\ge\)0 hay 48a2+16(3a-4)a+45b2-54b+25\(\ge\)0
Dấu "=" xảy ra khi và chỉ khi \(a=\frac{1}{2};b=\frac{1}{3};c=\frac{1}{6}\)
Cho a,b,c,d khác 0 và a/b=c/d. Chứng minh rằng :
2a-4b/3a=2c-a4/3c
bài 1:a, tính giá trị của biểu thức 4a-b/3a+3+4b-a/3b-3 với a-b=3; a≠-1; b≠1.
b, cho đa thức f(x)=a^2+bx+c thỏa mãn f(3)=f(-3).Chứng minh rằng f(x)=f(-x)