Cho ABC có AH là đường cao. Gọi M là trung điểm AC, D là điểm đối xứng của H qua M. oA.. B.. C.. D..0.9 oA.. B.. D0..9. AM MC2ACBM BM2AC Chứng minh : HADC là hình chữ nhậ
Cho tam giác ABC nhọn(AB<AC). Gọi M là trung điểm của BC. Vẽ D là điểm đối xứng với A qua M
A) chứng minh ABDC là hình bình hành
B) vẽ đường cao AH. Gọi E là điểm đối xứng với A qua H. Chứng minh BEDC là hình thang cân
C) gọi N là trung điểm của AC. Gọi K là điểm đối xứng của H qua N. Chứng minh AHCK là hình chữ nhật
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED//CB
Xet ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE can tại C
=>CA=CE=BD
Vì BC//ED và BD=CE
nên BCDE là hình thang cân
c: Xét tứ giác AHCK có
N là trung điểm chung của AC và HK
góc AHC=90 độ
=>AHCK là hình chữ nhật
Cho tam giác ABC và đường cao AH . Gọi M,N lần lượt là trung điểm của AB,AC. Gọi D là điểm đối xứng với H qua M,E là điểm đối xứng với H qua N. Chứng minh rằng A) tứ giác AHBD là hình chữ nhật B) tứ giác AHCE là hình chữ nhật
Câu 16 (3,0 điểm). Cho ABC vuông tại A( AB < AC) có đường cao AH, gọi M là trung điểm AC. Vẽ D là điểm đối xứng của H qua M .
a. Chứng minh tứ giác ADCH là hình chữ nhật.
b. Gọi E là điểm đối xứng của C qua H. Chứng minh : tứ giác AEHD là hình bình hành.
c. Kẻ EK AB tại K , gọi I là trung điểm AK , N là trung điểm BE.
Chứng minh : KE // IH
a: Xét tứ giác AHCD có
M là trung điểm chung của AC vàHD
góc AHC=90 độ
Do đó: AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
Câu 16 (3,0 điểm). Cho ABC vuông tại A( AB < AC) có đường cao AH, gọi M là trung điểm AC. Vẽ D là điểm đối xứng của H qua M .
a. Chứng minh tứ giác ADCH là hình chữ nhật.
b. Gọi E là điểm đối xứng của C qua H. Chứng minh : tứ giác AEHD là hình bình hành.
c. Kẻ EK AB tại K , gọi I là trung điểm AK , N là trung điểm BE.
Chứng minh : KE // IH
a: Xét tứ giác AHCD có
M là trung điểm chung của AC vàHD
góc AHC=90 độ
Do đó: AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
Cho tam giác ABC vuông tại A, đường cao AH. D đối xứng với H qua AB. E đối xứng với H qua AC. Gọi I là giao điểm của AB và DH. K là giao điểm của AC và EH
a) Chứng minh AIHK là hình chữ nhật
b) Chứng minh D, E, A thẳng hàng
c) Gọi m là trung điểm của BC chứng minh AM vuông góc với IK
Cho tam giác ABC vuông tại A (AB < AC) có M là trung điểm BC. Gọi D là điểm đối xứng của A qua M. a) Chứng minh tứ giác ABCD là hình chữ nhật. b) Gọi AH là đường cao của tam giác ABC và K là điểm đối xứng với A qua H. Chứng minh rằng KD // BC, từ đó suy ra tứ giác BCDK là hình thang cân. c) Trên tia đối của tia CA lấy điểm E sao cho CE = CA. Chứng minh ba điểm K, D, E thẳng hàng
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
cho tam giác abc vuông tại A, đường cao AH. D,E là hình chiếu của H trên AB,AC.
a) tứ giác ADHE là hình gì?
b) Gọi M là điểm đối xứng với H qua D. MAED là hình gì?
c) O là trung điểm của BC. C/m OA vuông góc với AM
cho tam giác ABC vuông tại A, AB < AC; AH là đường cao. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AB2= BH>BC
b) Chứng minh BC, DE cắt nhau tại điểm J và OA vuông góc DE.
c)Gọi I là trung điểm Ah, M là điểm đối xứng của A qua OI. Chứng minh AM, BC, DE đồng quy
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là đối xứng của H qua AB, N là đối xứng của H qua AC. a) Chứng minh AM = AN. b) Chứng minh M là đối xứng của N qua A
oa huhuhu giúp với
Hôm nay sáng mồng hai tháng chín
Thủ đô hoa vàng nắng Ba Đình
Muôn triệu tim chờ chim vẫn nín
Bỗng vang lên tiếng hát ân tình
Hồ Chí Minh, Hồ Chí Minh
Người đứng trên đài lặng phút giây
Trông đàn con đó vẫy hai tay
Cao cao vầng trán ngời đôi mắt
Độc lập bây giờ mới thấy đây.