Tim x,y trong z sao cho
2x^2+3y^2=17
x/2=y/3 ;y/3=z/4 va cho 2x+3y+z=17 tim x
Giải:
Ta có: x/2 = y/3, y/3 = z/4 => x/2 = y/3 = z/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2x/4 = 3y/9 = 2x + 3y + z / 4 + 9 + 4 = 17/17 = 1
+) x/2 = 1 => x = 2
Vậy x = 2
tim x, y E Z sao cho:
3y-2(x^2)=5
Tìm x,y,z biết:x/3=y/2=z/-2 và x^2 +3y^2-z^2=17
Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)
\(\Rightarrow x=3k;y=2k;z=-2k\)
Ta có: \(x^2+3y^2-z^2=17\)
\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)
\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)
\(\Rightarrow17k^2=17\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
Khi k = 1 thì:
\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)
Khi k = -1 thì:
\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)
Tim x,y,z : 3(x-1)=2(y-2),4(y-2)=3(z-3) va 2x+3y-z=50
Tìm x;y biết:
1)x+2/5=y-1=z-5/3 và 2x-3y+z=70
2)Tim giá trị nhỏ nhất của biểu thức sau.
A)A=|x-2017|+|x-17|
Công thức| a|+|b|>hoac bằng |a+b|
2)
A)A=|x-2017|+|x-17|
ta có A= \(\left|x-2017\right|+\left|x-17\right|=\left|x-2017\right|+\left|17-x\right|\)
\(\ge\left|x-2017+17-x\right|=\left|-2000\right|=2000\)
vậy A\(\ge2000\)
=>GTNN của A là 2000 khi x-2017 và x-17 cùng dấu
=> \(\left[{}\begin{matrix}x-2017\ge0\\x-17\ge0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\ge2017\\x\ge17\end{matrix}\right.\)
hoặc
=>\(\left[{}\begin{matrix}x-2017\le0\\x-17\le0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\le2017\\x\le17\end{matrix}\right.\)
=>17\(\le x\le2017\)
Tim x+y+z = ? biet (x-1) /2= (y-2) /3 = (z-3) /4 va 2x+3y-z=95
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
x-1/2 = y-2/3 = z-3/4 = 2x-2+3y-6-z+3/4+9-4 = 2x+3y-z + (-5)/9 = 90/9 = 10
x-1/2 = 10 => x= 21
y-2/3 = 10 => y = 32
z-3/4 = 10 => x = 43
Vậy x + y + z= 21 + 32 + 43 = 96
a, Tim x biet:/x-2/+/3-2x/=2x+1
b, Tim x,y thuoc Z biet:xy+2x-y=5
c, tim x,y,z, biet :2x=3y;4y=5zva 4x-3y+5z=7
tim x,y,z thuoc Z biet /2x-4/+/y+2/+/2x+3y-z/=0
tim x y biet x^2+y^2 + z^2 -xy-3y-2z+4=0