Tìm max của:
a) A= - x2 + x - 1
b) B = - x2 - x
Ai làm được đầu tiên thì mình like cho mình đang cần gấp
Tìm min của biểu thức(áp dụngBđtCauchy)
Q= (x2 + 2x+1)/(x+2)
R= (x2 -x+4)+ 1/( x 2 -x -1)
S=(x2 +x+1)/ (x2 +2x+1)
TÌM MAX CỦA BIỂU THỨc
A= x/(x+2004)2 với x>0
B= 3/(4x2 - 4x+5)
C= (x2 -6x+14)/ (x2- 6x+12)
Giúp mk với, đúng mình tick cho , mình cần gấp lắm, làm câu nào cũng được nhé!! Được hết ccàng tốt)
Bài 1: Tìm x biết:
a) 8x.(x-2007)-2x+4034=0
b) x/2 + x2/8=0
c) 4-x= 2.(x-4)2
d) ( x2+1).(x-2)+2x=4
Mình đang cần gấp bài này, các bạn giúp mình nhé
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
Phát biểu thành lời, xét tính đúng sai và lập mệnh đề phủ định của các mệnh đề sau:
a/ ∃ x ∈ R : x2 = -1
b/∀ x ∈ R : x2 +x +2 ≠0
giup mình voi . Mình cần gấp
Lời giải:
a. Mệnh đề sai, vì $x^2\geq 0>-1$ với mọi $x\in\mathbb{R}$ theo tính chất bình phương 1 sosos.
Mệnh đề phủ định: $\forall x\in\mathbb{R}, x^2\neq -1$
b. Mệnh đề đúng, vì $x^2+x+2=(x+0,5)^2+1,75>0$ với mọi $x\in\mathbb{R}$ nên $x^2+x+2\neq 0$ với mọi $x\in\mathbb{R}$
Mệnh đề phủ định: $\exists x\in\mathbb{R}| x^2+x+2=0$
tìm x biết :
a) 1,25% của x là 2,25
b) 12,5 % của x là 4,5
làm lẹ nha mình cần gấp ai làm đầu tiên thì mình tick cho , mai hết hạn rồi
Bài 2: Tìm giá trị nhỏ nhất, giá trị lớn nhất (nếu có) của:
a) A = x2 - 4x + 1
b) B = -x2 - 8x + 5
c) C = 2x2 - 8x +19
d) D = -3x2 - 6x +1
a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(minA=-3\Leftrightarrow x=2\)
b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)
\(maxB=21\Leftrightarrow x=-4\)
c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)
\(minC=11\Leftrightarrow x=2\)
d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)
\(maxD=4\Leftrightarrow x=-1\)
a) A = (x-2)^2 - 3 >= -3
--> A nhỏ nhất bằng -3
<=> x = 2
b) B = -(x+4)^2 + 21 <= 21
--> B lớn nhất bằng 21
<=> x = -4
tìm x
2.(-x-3)+27=53
mình đang cần gấp vì mai mình thi gòi, giúp mình với
2.(-x-3)=53-27
2.(-x-3)=26
-x-3=26/2
-x-3=13
-x=13+3
-x=16
=> x=-16
2.(-x-3)+27=53
2.(-x-3) =53-27
2.(-x-3) =26
(-x-3) =26:2
-x-3 =13
=> -x= 16
=> x= -16
2.(-x-3)+27=53
2.(-x-3)=53-27
2.(-x-3)=26
-x-3=26:2
-x-3=13
-x=13+3
-x=16
=>x=-16
Vậy x=-16
Tìm GTNN của biêu thức D=(x+1).(x2 - 4).(x+5)+2014
giúp mình với ạ, mình đang cần gấp!
Lời giải:
$D=(x+1)(x^2-4)(x+5)+2014$
$=(x+1)(x+2)(x-2)(x+5)+2014$
$=(x^2+3x+2)(x^2+3x-10)+2014$
$=t(t-12)+2014$ (đặt $x^2+3x+2=t$)
$=t^2-12t+2014=(t-6)^2+1978$
$=(x^2+3x-4)^2+1978\geq 1978$
Vậy gtnn của biểu thức là $1978$. Giá trị này đạt tại $x^2+3x-4=0$
$\Leftrightarrow x=1$ hoặc $x=-4$
giúp mik bài này đi mình đang cần gấp ạ
Cho phương trình x2+ mx- m- 1=0 (1) (với m là tham số)
a) giải phương trình khi m=1
b) cm rằng pt (1) luôn có nghiệm với mọi giá trị của m
c) tìm giá trị của m biết pt (1) có 2 nghiệm x1, x2 thỏa mãn x12 + x22=5
Cho pt: x^2 - 2mx +m^2 - m +1 = 0 (m là tham số)
a) Tìm m để pt có 2 nghiệm phân biệt x1,x2.
Giúp mình với mình đang cần gấp
Phương trình có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=m^2-\left(m^2-m+1\right)>0\)
\(\Leftrightarrow m-1>0\)
\(\Rightarrow m>1\)
A,pt có 2 no pb
`<=>Delta>0`
`<=>4m^2-4(m^2-m+1)>0`
`<=>4(m-1)>0`
`<=>m-1>0`
`<=>m>1`