Lời giải:
$D=(x+1)(x^2-4)(x+5)+2014$
$=(x+1)(x+2)(x-2)(x+5)+2014$
$=(x^2+3x+2)(x^2+3x-10)+2014$
$=t(t-12)+2014$ (đặt $x^2+3x+2=t$)
$=t^2-12t+2014=(t-6)^2+1978$
$=(x^2+3x-4)^2+1978\geq 1978$
Vậy gtnn của biểu thức là $1978$. Giá trị này đạt tại $x^2+3x-4=0$
$\Leftrightarrow x=1$ hoặc $x=-4$