\(3x\left(2-5x\right)+15x^2-18=0\)
a) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)-28=0\)
b)\(\left(x^2+5x+6\right)\left(x^2-15x+56\right)-144=0\)
Tìm x
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
c) \(7x^2-21x=0\)
d) \(9x^2-6x+1=0\)
e) \(16x^2-49=0\)
f) \(5x^3-20x=0\)
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
\(\Rightarrow15x^2-35x-15x^2+15x=3\)
\(\Rightarrow-20x=3\)
\(\Rightarrow x=-\dfrac{3}{20}\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
\(\Rightarrow24x^2+12x-12x-6-24x^2-15x+24x+20=2\)
\(\Rightarrow9x+14=2\)
\(\Rightarrow9x=-12\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(7x^2-21x=0\)
\(\Rightarrow7x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(9x^2-6x+1=0\)
\(\Rightarrow\left(3x\right)^2-2.3x+1=0\)
\(\Rightarrow\left(3x-1\right)^2=0\)
\(\Rightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
e) \(16x^2-49=0\)
\(\Rightarrow\left(4x\right)^2-7^2=0\)
\(\Rightarrow\left(4x-7\right)\left(4x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-7=0\\4x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=7\\4x=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
f) \(5x^3-20x=0\)
\(\Rightarrow5x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0\\x^2-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x^2=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
Tìm x
a, \(3x^2-5x-12=0\)
b,\(7x^2-9x+2=0\)
c,\(4.\left(x^2+15x+50\right).\left(x^2+18x+72\right)=3x^2\)
d,\(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-3=0\)
trình bày cách làm nữa nha
Phân tích thành nhân tử r tìm x nhé bạn. k đi mình làm
a) \(3x^2-5x-12=0\)
\(\Leftrightarrow3x^2+4x-9x-12=0\)
\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)
b) \(7x^2-9x+2=0\)
\(\Leftrightarrow7x^2-7x-2x+2=0\)
\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).
\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)
Tìm x
a, \(3x^2-5x-12=0\)
b,\(7x^2-9x+2\)
c, \(4.\left(x^2+15x+50\right).\left(x^2+18x+72\right)=3x^2\)
d, \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-3=0\)
trình bày cách almf nữa nhá
a)3x2+4x-9x-12=0
=>(3x2+4x)-(9x+12)=0
=> x(3x+4)-3(3x+4)=0
=> (x-3)(3x+4)=0 =>x-3=0 hoặc 3x+4=0
=>tự tính
b)7x2-9x+2=0
=>7x2-7x-2x+2=0
=>(7x2-7x)-(2x-2)=0
=>7x(x-1)-2(x-1)=0
=>(7x-2)(x-1)=0
=>như câu a
bạn chỉ biết làm 2 câu thôi
Tìm x: \(\left(15x^4+4x^3+11x^2+14x-8\right):\left(5x^2+3x-2\right)\)
sai đề rồi bạn ơi
Giải các phương trình sau :
a) \(3x^3+6x^2-4x=0\)
b) \(\left(x+1\right)^3-x+1=\left(x-1\right)\left(x-2\right)\)
c) \(\left(x^2+x+1\right)^2=\left(4x-1\right)^2\)
d) \(\left(x^2+3x+2\right)^2=6\left(x^2+3x+2\right)\)
e) \(\left(2x^2+3\right)^2-10x^3-15x=0\)
f) \(x^3-5x^2-x+5=0\)
a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)
Giải PT : \(\left(x^2-3x\right)^2-5x^2+15x+4=0\)
Mong các bạn giúp mình bài này.
\(\left(x^2-3x\right)^2-5\left(x^2-3x\right)+4=0\)
Đặt \(x^2-3x=a\) ta được:
\(a^2-5a+4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-3x=1\\x^2-3x=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-3x-1=0\\x^2-3x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\\x=-1\\x=4\end{matrix}\right.\)
thức hiên phép nhân:
a)\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)
b)\(\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\)
Làm tính chia :
a) \(\left(25x^2-5x^4+10x^2\right):5x^2\)
b) \(\left(15x^3y^2-6x^2y-3x^2y^2\right):6x^2y\)
a) (25x5 – 5x4 + 10x2) : 5x2 = (25x5 : 5x2 ) - (5x4 : 5x2 ) + (10x2 : 5x2 )
= 5x3 – x2 + 2
b) (15x3y2 – 6x2y – 3x2y2) : 6x2y
= (15x3y2 : 6x2y) + (– 6x2y : 6x2y) + (– 3x2y2 : 6x2y)
= \(\dfrac{15}{6}\)xy - 1 - \(\dfrac{3}{6}\)y = \(\dfrac{5}{2}\)xy - \(\dfrac{1}{2}\)y - 1.