Hàm số \(y=\left\{{}\begin{matrix}2xkhix\ge1\\x+1khĩ< 1\end{matrix}\right.\) có đồ thị
Vẽ đồ thị các hàm số :
a. \(y=\left\{{}\begin{matrix}2x;\left(x\ge0\right)\\-\dfrac{1}{2}x;\left(x< 0\right)\end{matrix}\right.\)
b. \(y=\left\{{}\begin{matrix}x+1;\left(x\ge1\right)\\-2x+4;\left(x< 1\right)\end{matrix}\right.\)
Lập bảng biến thiên và vẽ đồ thị hàm số
a) y = |x-1|+|2x-4|
b) y = \(\left\{{}\begin{matrix}2x-1,x\ge1\\-x+2,x< 1\end{matrix}\right.\)
Vẽ đồ thị hàm số :
\(y=\left\{{}\begin{matrix}2x-1;\left(x\ge1\right)\\\dfrac{1}{2}x+1;\left(x< 1\right)\end{matrix}\right.\)
Điểm \(\left(1;1\right)\) thuộc đồ thị, điểm \(\left(1;\dfrac{3}{2}\right)\) không thuộc đồ thị .
Vẽ đồ thị của các hàm số sau:
a/ \(y=\left\{{}\begin{matrix}-x^2-2\left(x< 1\right)\\2x^2-2x-3\left(x\ge1\right)\end{matrix}\right.\)
b/ \(y=\left\{{}\begin{matrix}2x\left(x< 0\right)\\x^2-x\left(x\ge0\right)\end{matrix}\right.\)
Bài 1: Xét tính chẵn lẻ của hàm số :y=|x3-x|
Bài 2: ho hàm số y= f(x)=\(\left\{{}\begin{matrix}x-3,x\ge1\\2x^2-x-3,x< 1\end{matrix}\right.\) có đồ thị (C)
a) Tính f(4),f(-1)
b) Điểm nào sau đấy thuộc (c): A(4:1), b(-1,-4)
Bài 3: Cho tập hợp A= \(\left\{n\in◻\cdot\left|\right|9⋮\right\}\) B = (0;10)
a)Liệt kê các phần tử của A
b) Tính \(A\cap B\), \(A\cup B\)
(mình đag cần rất gấp)
Bài 1:
\(f\left(-x\right)=\left|\left(-x\right)^3+x\right|=\left|-x^3+x\right|=\left|-\left(x^3-x\right)\right|=\left|x^3-x\right|=f\left(x\right)\)
Vậy hàm số chẵn
Bài 2:
\(f\left(4\right)=4-3=1\\ f\left(-1\right)=2.1+1-3=0\\ b,\text{Thay }x=4;y=1\Leftrightarrow4-3=1\left(\text{đúng}\right)\\ \Leftrightarrow A\left(4;1\right)\in\left(C\right)\\ \text{Thay }x=-1;y=-4\Leftrightarrow2\left(-1\right)^2+1-3=-4\left(\text{vô lí}\right)\\ \Leftrightarrow B\left(-1;-4\right)\notin\left(C\right)\)
bài1
a) hãy xác định hàm số y=ax\(^2\) bt rằng đồ thị của nó đi qua điểm \(M(-2;2)\)
b\()\) vẽ đồ thị hàm số y= \(\dfrac{1}{2}x^2\)
bài 2
a)\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\)
giải hộ tui với
Bài 1:
a: Thay x=-2 và y=2 vào hàm số, ta được:
4a=2
hay a=1/2
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=3\\4x-12y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y=x-5=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=1\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{y}=\dfrac{1}{2}-\dfrac{1}{5}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(2;\dfrac{10}{3}\right)\)
lập bảng biến thiên và vẽ đồ thị hàm số
a) y=\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+3\right)^2\left(x\le1\right)\\2\left(x>1\right)\end{matrix}\right.\)
c2
a/ ko sử dụng mt cầm tay, giải hpt
\(\left\{{}\begin{matrix}x+2y=4\\3x-y=5\end{matrix}\right.\)
b/ cho hàm số \(y=-\dfrac{1}{2}x^2\)có đồ thị (P)
- vẽ đồ thị (P) của hàm số
- cho đường thẳng \(y=mx+n\left(\Delta\right)\). tìm m.n để đường thẳng (\(\Delta\)) song song vs đường thẳng \(y=-2x+5\left(d\right)\) và có duy nhất 1 điểm chung vs đồ thị (P)
b: Vì (Δ)//(d) nên m=-2
Vậy: (Δ): y=-2x+n
Phương trình hoành độ giao điểm là
\(-\dfrac{1}{2}x^2+x-n=0\)
\(\text{Δ}=1^2-4\cdot\dfrac{-1}{2}\cdot\left(-n\right)=1-2n\)
Để (d) tiếp xúc với (P) thì -2n+1=0
hay n=1/2
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1