Cho lục giác đều ABCDEF tâm O. Tìm ảnh của tam giác COD qua phép tịnh tiến vecto \(\overrightarrow{BA}\)
Cho lục giác đều ABCDEF tâm O. Tìm ảnh của tam giác AOF.
a. Qua phép tịnh tiến theo vectơ AB
b. Qua phép đối xứng qua đường thẳng BE.
c. Qua phép quay tâm O góc quay 120 o .
Cho lục giác đều ABCDEF tâm O. Tìm ảnh của tam giác AOF :
a) Qua phép tịnh tiến theo vectơ \(\overrightarrow{AB}\)
b) Qua phép đối xứng qua đường thẳng BE
c) Qua phép quay tâm O góc \(120^0\)
a) Tam giác BCO.
b) Tam giác COD.
c) Tam giác EOD.
a) Tam giác BCO.
b) Tam giác COD.
c) Tam giác EOD.
Cho lục giác đều ABCDEF, O là tâm đối xứng của nó, I là trung điểm của AB
a) Tìm ảnh của tam giác AIF qua phép quay tâm O góc 120 ο
b) Tìm ảnh của tam giác AOF qua phép quay tâm E góc 60 ο
a) Phép quay tâm O góc 120 ο biến F, A, B lần lượt thành B, C, D; biến trung điểm I của AB thành trung điểm J của CD. Nên nó biến tam giác AIF thành tam giác CJB.
b) Phép quay tâm E góc 60 ο biến A, O, F lần lượt thành C, D, O.
Cho lục giác đều ABCDEF tâm O như hình bên.
Tam giác EOD là ảnh của tam giác AOF qua phép quay tâm O góc quay α . Tìm α .
A. α = 60 °
B. α = − 60 °
C. α = 120 °
D. α = − 120 °
Cho lục giác đều ABCDEF tâm O như hình bên. Tam giác EOD là ảnh của tam giác AOF qua phép quay tâm O góc quay α . Tìm α.
A. 30°
B. 60°
C. 90°
D. 120°
Đáp án D.
Ta có phép quay
Q O ; α A = E ⇔ O A = O E O A ; O E = α ⇒ α = A O E ^ = 120 °
Cho lục giác đều ABCDEF tâm O như hình bên.Tam giác EOD là ảnh của tam giác AOF qua phép quay tâm O góc quay α . Tìm α .
A. α = 60 0
B. α = - 60 0
C. α = 120 0
D. α = - 120 0
cho tam giác đều A,B,C. Gọi M,N,P lần lượt là trung điểm của BC,CA,AB. a) Xác định ảnh của A,B qua phép tịnh tiến MC. b)Xác định ảnh của đường thẳng MP qua phép tịnh tiến vecto NA. c) Xác định ảnh của tam giác CMN qua phép tịnh tiến vecto CA. d)Xác định ảnh của hbh BMNP qua phép tịnh tiến (vecto BA- vecto BC)
Cho lục giác đều ABCDEF, O là tâm đối xứng của nó, I là trung điểm của AB
a) Tìm ảnh của tam giác AIF qua phép quay tâm O góc \(120^0\)
b) Tìm ảnh của tam giác AOF qua phép quay tâm E góc \(60^0\)
a) Phép quay tâm O góc \(120^0\) biến F, A, B lần lượt thành B, C, D; Biến trung điểm I của AB thành trung điểm J của CD. Nên biến tam giác AIF thành tam giác CJB
b) Phép quay tâm E góc \(60^0\) biến A, O, F lần lượt thành C, D, O
1. Cho hình bình hành ABCD có tâm O, Gọi M, N lần lượt là trung điểm của AB, AO.
a) XĐ ảnh của tam giác AND qua phép tịnh tiến \(\overrightarrow{OC}\)
b)XĐ ảnh của tam giác AMN qua phép vị tự tâm O, tỉ số -2
2. trong mặt phẳng Oxy cho điểm M(1;-5),\(\overrightarrow{v}=\left(-2,1\right)\)đường thẳng d: x-4y+3=0,
đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=5\)
a) tìm tọa độ M' là ảnh của M qua phép tịnh tiến vecto \(\overrightarrow{v}\)
b)Viết phương trình d' là ảnh của d qua phép quay tâm O, góc quay \(^{-90^o}\)
c) tìm phương trình (C') là ảnh của (C) qua phép vị tự tâm O, tỉ số 2.
3.
Cho đường thẳng (d): x-5y-4=0. Viết phương trình đường thẳng (d') ảnh của (d) qua phép vị tự tâm O , góc 90o và phép vị tự tâm I(-2,3) tỉ số -3