Cho \(2\le n\in N,x_1,x_2,....,x_n\in\left[1;\sqrt{2}\right]\)
cmr : \(\frac{\sqrt{x_1^2-1}}{x_2}+....+\frac{\sqrt{x_n^2-1}}{x_1}\le\frac{n}{\sqrt{2}}\)
Cho \(x_i\in\left[1;\sqrt{2}\right]\)
Chứng minh: \(\frac{\sqrt{x_1^2}-1}{x_2}+\frac{\sqrt{x_2^2}-1}{x_3}+...+\frac{\sqrt{x_n^2}-1}{x_1}\le\frac{n\sqrt{2}}{2}\)
Chắc bạn đánh nhầm đề. Đây là bài 7 trong báo TTT tháng trước. (Nếu mình sửa sai thì mình xin lỗi nhé).
Sửa đề: Cho \(n\in\mathbb{N},n\geq 2\) và \(x_i\in[1;\sqrt{2}] \forall i\in\overline{1,n}\).
Chứng minh: \(\dfrac{\sqrt{x_1^2-1}}{x_2}+\dfrac{\sqrt{x_2^2-1}}{x_3}+...+\dfrac{\sqrt{x_n^2-1}}{x_1}\le\dfrac{n\sqrt{2}}{2}\).
Giải:
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{x_1^2-1}}{x_2}=\dfrac{1}{2\sqrt{2}}.2.\sqrt{x_1^2-1}.\dfrac{\sqrt{2}}{x_2}\le\dfrac{1}{2\sqrt{2}}.\left(x_1^2-1+\dfrac{2}{x_2^2}\right)\).
Chứng minh tương tự...
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\).
Mặt khác với mọi \(i\in\overline{1,n}\) ta có:
\(x_i^2+\dfrac{2}{x_i^2}-3=\dfrac{\left(x_i^2-1\right)\left(x_i^2-2\right)}{x_i^2}\le0\).
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\le\dfrac{1}{2\sqrt{2}}\left(3n-n\right)=\dfrac{n\sqrt{2}}{2}=VP\left(đpcm\right)\).
Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)
\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
Tìm \(x_1;x_2;...;x_n\) thoả mãn:
\(\sqrt{x_1^2-1^2}+2\sqrt{x_2^2-2^2}+...+n\sqrt{x_n^2-n^2}=\dfrac{1}{2}\left(x_1^2+x_2^2+...+x_n^2\right)\)
cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn
chứng minh rằng:
\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)
Nhìn nó tưởng khủng hóa ra đơn giản lắm :D
Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn
Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn
=> VT = VP. đpcm
Lão Linh mới xét đến điều kiện dấu "=" xảy ra
Thế còn điều kiện "<" vứt đâu?
nếu nó mà dễ thế thì mình đã ko hỏi rồi,linh à
Cho các số thực dương x1, x2, ..., xn. Chứng minh rằng
\(\frac{\sqrt{x_1^2-1}}{x_2}+\frac{\sqrt{x_2^2-1}}{x_3}+...+\frac{\sqrt{n_{n-1}^2-1}}{x_n}+\frac{\sqrt{x_n^2-1}}{x_1}\le\frac{n\sqrt{2}}{2}\)
cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn
chứng minh rằng:
\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)
Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath
tìm nghiệm nguyên dương của phương trình sau
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_n\right)=2\sqrt[n]{x_1.x_2...x_n}\)
Vì \(x_1,x_2,x_3,....,x_n>0\)nên ta áp dụng bất đẳng thức Cosi, được :
\(1+x_1\ge2\sqrt{x_1}\)(1)
\(1+x_2\ge2\sqrt{x_2}\)(2)
.............................
\(1+x_n\ge2\sqrt{x_n}\)(n)
Nhân n bất đẳng thức trên theo vế, được :
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_n\right)\ge2^n.\sqrt{x_1.x_2...x_n}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow x_1=x_2=x_3=...=x_n=1\)(thoả mãn điều kiện)
Vậy nghiệm nguyên dương của phương trình : \(x_1=x_2=...=x_n=1\)
Cho \(x_1,x_2,...,x_n\) thỏa mãn: \(\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_n}=1\).
Chứng minh rằng: \(x_1x_2...x_n\ge\left(n-1\right)^n\)
AM-GM thôi :))
từ giả thiết :\(\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-1}}=\frac{x_n}{1+x_n}\)
Áp dụng BĐT AM-GM: \(\frac{x_n}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_{n-1}\right)}}\)
từ giả thiết ta cũng có: \(\frac{x_{n-1}}{1+x_{n-1}}=\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-2}}+\frac{1}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_{n-2}\right)\left(1+x_n\right)}}\)
cứ như thế,chuyễn 1 hạng tử từ vế trái sang vế phải, ta được n bất đẳng thức
Nhân chúng lại với nhau: \(\frac{x_1.x_2...x_n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\ge\frac{\left(n-1\right)^n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\)
do đó \(x_1.x_2.x_3...x_n\ge\left(n-1\right)^n\)
P/s: Nếu thắc mắc vì sao nó hết căn,để ý rằng nhân tử \(x_n\)xuất hiện (n-1) lần , nó chỉ không xuất hiện ở BĐT thứ 2 ở trên . căn (n-1) ắt sẽ hết
Cho `x_1; x_2; ....; x_2023` là các số dương đôi một phân biệt sao cho:
`a_n = sqrt((x_1+x_2+...+x_n)(1/(x_1) + 1/(x_2) + ... + 1/(x_n))` là một số nguyên với `n = 1; 2; 3; ...; 2023`.
Chứng minh `a_(2023) >=3034`.