Cho các số thực dương x1, x2, ..., xn. Chứng minh rằng
\(\frac{\sqrt{x_1^2-1}}{x_2}+\frac{\sqrt{x_2^2-1}}{x_3}+...+\frac{\sqrt{n_{n-1}^2-1}}{x_n}+\frac{\sqrt{x_n^2-1}}{x_1}\le\frac{n\sqrt{2}}{2}\)
Cho phương trình \(x^4-\left(3m+1\right)x^2+6m-2=0.\)
Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt \(x_1;x_2;x_3;x_4\)sao cho \(x_1-x_2=x_2-x_3=x_3-x_4\)
1. Cho tập \(X=\left\{1,2,...,n\right\}\), ở đó \(n\inℕ^∗\). Chứng minh rằng số các tổ hợp gồm \(r\) phần tử của \(X\) không chứa bất kì 2 phần tử liên tiếp nào là \(C^r_{n-r+1}\) với \(0\le r\le n-r+1\)
2. Một hoán vị \(x_1,x_2,...,x_{2n}\) của tập \(\left\{1,2,...,2n\right\}\) (với \(n\inℕ\)) được gọi là có tính chất \(T\) nếu \(\left|x_i-x_{i+1}\right|=n\) với ít nhất một chỉ số \(i\) thuộc tập \(\left\{1,2,...,2n-1\right\}\). Chứng minh rằng với mọi \(n\) , có nhiều hoán vị có tính chất \(T\) hơn là những hoán vị không có tính chất \(T\).
Giúp mình làm những bài này với. Mình nghĩ mãi vẫn không nghĩ ra lời giải nào thỏa đáng. Mình cảm ơn trước.
Tìm tất cả các giá trị của tham số m để phương trình x^2+2x+m=0 có hai nghiệm x1, x2 thỏa mãn \(\dfrac{x_1^2-3_{x_1}+m}{x_2}+\dfrac{x_2^2-3_{x_2}+m}{x_1}\le2\)
đồ thị hàm số \(y=x^2-24x+m^2+2m+84\) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) thỏa mãn \(x_2=x_1^3-29x_1-24\). Gọi S là tổng các giá trị của m . Tính giá trị của S
đồ thị hàm số \(y=x^2-24x+m^2+2m+84.\) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) thỏa mãn \(x_2=x_1^3-29x_1-24\). Gọi S là tổng các giá trị của m . Tính giá trị của S
đồ thị hàm số \(y=x^2-24x+m^2+2m+84.\) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) thỏa mãn \(x_2=x_1^3-29x_1-24\). Gọi S là tổng các giá trị của m . Tính giá trị của S
Tìm tất cả các giá trị thực của tham số m để phương trình \(x^2-\left(m-1\right)x+m+2=0\)\(0\)
có hai nghiệm phân biệt \(x_1\), \(x_2\),khác 0 thỏa mãn : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}>1\)
Hệ phương trình \(\hept{\begin{cases}y^2-\left|xy\right|+2=0\\8-x^2=\left(x+2y\right)^2\end{cases}}\)
có các nghiệm là \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)
với \(x_1;y_1;x_2;y_2\) là các số vô tỉ
tìm \(S=x_1^2+x_2^2+y_1^2+y_2^2\)