Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2020 lúc 19:52

\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)

b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)

c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)

\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)

\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)

d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:

\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)

\(=\frac{2tana}{cos^2a}\)

Nguyễn Lan Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Đông Tuấn
28 tháng 4 2017 lúc 16:03

Tôi chẳng thể hiểu nổi

Trương Khánh Ly
Xem chi tiết
Hoàng Tử Hà
23 tháng 2 2021 lúc 14:26

Nó ko phải dạng vô định thì bạn cứ thay vô và tính toán bình thường

\(\lim\limits_{x\rightarrow0}\dfrac{1-\dfrac{1}{x}}{1+\dfrac{1}{x}}=\lim\limits_{x\rightarrow0}\dfrac{x-1}{x+1}=\dfrac{0-1}{0+1}=-1\)

ĐỖ THỊ THANH HẬU
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Thu Hiền
Xem chi tiết
Nguyễn Huỳnh Đông Anh
12 tháng 5 2016 lúc 21:40

1. Ta có : \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}=\lim\limits_{x\rightarrow0}\left(\frac{\sin ax}{\sin bx}.\frac{\cos ax}{\cos bx}\right)=\lim\limits_{x\rightarrow0}\frac{\sin ax}{\sin bx}=\lim\limits_{x\rightarrow0}\left(\frac{\frac{\sin ax}{ax}}{\frac{\sin bx}{bx}}.\frac{ax}{bx}\right)=\frac{a}{b}\frac{\lim\limits_{x\rightarrow0}\frac{\sin ax}{ax}}{\lim\limits_{x\rightarrow0}\frac{\sin bx}{bx}}=\frac{a}{b}\frac{\lim\limits_{y\rightarrow0}\frac{\sin y}{y}}{\lim\limits_{z\rightarrow0}\frac{\sin z}{z}}=\frac{a}{b}\)

2. Ta có : \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\sin^2\frac{ax}{2}}{x^2}=\lim\limits_{x\rightarrow0}\left[\left(\frac{\sin\frac{ax}{2}.\sin\frac{ax}{2}}{\frac{ax}{2}.\frac{ax}{2}}\right).\frac{a^2}{2}\right]\)

                                   \(=\frac{a^2}{2}\left(\lim\limits_{y\rightarrow0}\frac{\sin y}{y}\right)^2=\frac{a^2}{2}\)

 

Trương Khánh Ly
Xem chi tiết
Hoàng Tử Hà
23 tháng 2 2021 lúc 14:18

a/ \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}=\dfrac{2.\left(-1\right)^3-5\left(-1\right)-4}{\left(-1+1\right)^2}=-\dfrac{1}{0}=-\infty\)

b/ \(\lim\limits\left(x^3+2\sqrt{x^5}-1\right)=\lim\limits x^3\left(1+0-0\right)=+\infty\)

 

Phạm Minh Khôi
Xem chi tiết
Hồng Phúc
20 tháng 6 2021 lúc 16:14

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-x+x-\sqrt[3]{x^3-x^2}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x}{\sqrt{x^2+x}+x}+\dfrac{x^2}{x^2+x.\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{x}}+1}+\dfrac{1}{1+\sqrt[3]{1-\dfrac{1}{x}}+\sqrt[3]{\left(1-\dfrac{1}{x}\right)^2}}\right)\)

\(=\dfrac{1}{\sqrt{1+0}+1}+\dfrac{1}{1+\sqrt[3]{1-0}+\sqrt[3]{\left(1-0\right)^2}}\)

\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)