tìm gtnn của biểu thức A=|x-1|+|x+2012|
Giúp em với sắp thi rùi ạ
cho biểu thức P =căn x+3/ căn x -1 .với các gt nguyên của x tìm gtnn của P
mọi người giúp e với e cảm ơn mn nhìu lắm
e sắp phải nộp rùi ạ
\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)
\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :
\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)
\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)
\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)
\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)
sorry mn cho e sửa lại đề ạ
tìm gtln của p ạ
Tìm GTNN của biểu thức:
A = 1/3 + 3 x | x - 1/3 |
giúp mình vs, sắp tơi deadline rùi!!!
\(A=\frac{1}{3}+3\left|x-\frac{1}{3}\right|\)
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta thấy : \(\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\); \(3\ge0\)
nên : \(3\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(\frac{1}{3}+3\left|x-\frac{1}{3}\right|\ge\frac{1}{3}+0\)\(\forall\)\(x\)
hay \(A\ge\frac{1}{3}\)\(\forall\)\(x\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\)\(\left|x-\frac{1}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{1}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{1}{3}\)
Vậy GTNN của \(A=\frac{1}{3}\)đạt được khi \(x=\frac{1}{3}\)
A=1/3+3x[x-1/3]
=>1/3+3x[x-1/3]=0
3x[x-1/3]=1/3
x-1/3=1/3:3
x=1/9+1/3
x=4/9
Tìm GTNN của biểu thức Q= \(\sqrt{x-1}-12\)
GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP Ạ
đk : x>= 1
Q = \(\sqrt{x-1}-12\)
với \(x\ge1\Leftrightarrow x-1\ge0\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow\sqrt{x-1}-12\ge12\)
Dấu ''='' xảy ra khi x = 1
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
Tìm GTNN của biểu thức: A=\(\frac{x^2+2x+3}{\left(x+2\right)^2}\)
Giúp em vơi!!! Mốt thi r ạ!!!
GTNN là \(\frac{2}{3}\)đạt được khi x = 1
Điều kiện x # -2
Ta có
A(x2 + 4x + 4) = x2 + 2x + 3
<=> x2 (A - 1) + x(4A - 2) + 4A - 3 = 0
Để phương trình có nghiệm thì ∆' \(\ge0\)
<=> (2A - 1)2 - (A - 1)(4A - 3) \(\ge0\)
<=> 3A - 2\(\ge0\)
<=> A \(\ge\frac{2}{3}\)
Tìm GTLN của biểu thức :
C = 3 - ! x + 2 !
Tìm GTNN của biểu thức :
A = ! 3x - 15 ! + 8
B = ! x +1 ! + ! y - 2 ! - 5
Ai giúp em đi, tối nay em đi học rùi.
\(\text{ C = 3 - | x + 2 |}\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow3-\left|x+2\right|\ge3-0\)
\(\Rightarrow3-\left|x+2\right|\ge3\)
\(\Rightarrow C\ge3\)
\(\Rightarrow C=3\Leftrightarrow\left|x+2\right|=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=0-2\)
\(\Rightarrow x=-2\)
Vậy \(\text{Max C = 3 }\Leftrightarrow x=-2\)
\(!x+2!\ge0\Leftrightarrow3-!x+2!\le3\)
"=" xảy ra khi x=-2
\(!3x-15!\ge0\)
\(!3x-15!+8\ge8\)
dấu = xảy ra khi x=5
\(A=\left|3x-15\right|+8\)
\(\left|3x-15\right|\ge0\)
\(\Rightarrow\left|3x-15\right|+8\ge0+8\)
\(\Rightarrow\left|3x-15\right|+8\ge8\)
\(\Rightarrow A\ge8\)
\(\Rightarrow A=8\Leftrightarrow\left|3x-15\right|=0\)
\(\Rightarrow3x-15=0\)
\(\Rightarrow x=\left(0+15\right):3=5\)
Vậy \(MinA=8\Leftrightarrow x=5\)
A=(-x2+x-11)/(x2-2*x+1)
tìm gtln,gtnn của biểu thức giúp e với ạ
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.