Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thắng
Xem chi tiết
Kim anh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 11 2021 lúc 17:14

Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?

\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)

\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)

\(\Leftrightarrow cos^22x+3cos2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2018 lúc 3:20

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2019 lúc 17:28

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2018 lúc 17:53

Hướng dẫn giải

Chọn B.

Ta có: 4sin4 + 12cos2 x – 7 =0

ó 4sin4x – 12sin2 x + 5= 0

Trần
Xem chi tiết
Nguyễn Phương HÀ
15 tháng 8 2016 lúc 8:24

Hỏi đáp Toán

Kinder
Xem chi tiết
迪丽热巴·迪力木拉提
28 tháng 5 2021 lúc 15:48

a/ \(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-cos2x}{2}\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-2cos^2x+1}{2}=\dfrac{2-2cos^2x}{2}=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1-cosx\right)\left(1+cosx\right)=0\)\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-cosx-1+cosx\right)=0\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\\2sinx-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=180^o\\x=30^o\end{matrix}\right.\)

 

 

Lê Thị Thục Hiền
28 tháng 5 2021 lúc 16:16

a) Đáp án: \(\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) \(3sin^2x+7cos2x-3=0\)

\(\Leftrightarrow3sin^2x+7\left(1-2sin^2x\right)-3=0\)

\(\Leftrightarrow11.sin^2x=4\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{2\sqrt{11}}{11}\\sinx=\dfrac{-2\sqrt{11}}{11}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) (Dị quá,câu này e ko biết đ/a đúng hay sai đâu)

Vậy...

c)\(\dfrac{4.sin^2x+6.sin^2x-9-3.cos2x}{cosx}=0\) (đk: \(x\ne\dfrac{\pi}{2}+k\pi\),\(k\in Z\))

\(\Rightarrow10sin^2x-9-3\left(1-2.sin^2x\right)=0\)

\(\Leftrightarrow sin^2x=\dfrac{3}{4}\)\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{\sqrt{3}}{2}\\sinx=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)(\(k\in Z\)) (Thỏa mãn đk)

Vậy...

迪丽热巴·迪力木拉提
28 tháng 5 2021 lúc 15:55

b/\(3sin^2x+7cos2x-3=0\Leftrightarrow3sin^2x+7\left(2cos^2x-1\right)-3=0\Leftrightarrow3sin^2x+14cos^2x-7-3=0\)\(\Leftrightarrow3sin^2x+3cos^2x+11cos^2x-10=0\Leftrightarrow3+11cos^2x-10=0\Leftrightarrow11cos^2x-7=0\)\(\Leftrightarrow cos^2x=\dfrac{7}{11}\Leftrightarrow cosx=\sqrt{\dfrac{7}{11}}\)\(\Leftrightarrow x=37^o5'\) 

Ủa sao kết quả xấu vậy:vvv Chắc sai đâu rồi:vv

Mai Anh
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 6 2021 lúc 13:37

Pt\(\Leftrightarrow3\left(cos^2x-sin^2x\right)-8.sinx.cosx=sin^2x+cos^2x\)

\(\Leftrightarrow2cos^2x-8sinx.cosx-4sin^2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\left(2+\sqrt{6}\right)sinx\\cosx=\left(2-\sqrt{6}\right)sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\dfrac{1}{2+\sqrt{6}}\\tanx=\dfrac{1}{2-\sqrt{6}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arc.tan\left(\dfrac{1}{2+\sqrt{6}}\right)+k\pi\\x=arc.tan\left(\dfrac{1}{2-\sqrt{6}}\right)+k\pi\end{matrix}\right.\), k nguyên

Vậy...

Nguyễn Thùy Linh
Xem chi tiết