Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Ngọc
Xem chi tiết
Nguyễn Phương Thanh
6 tháng 1 2016 lúc 23:35

tương tự baì đẳng trên mình vừa làm đấy

|A| <= 0 với mọi A

thì -|A| <= 0 vứi mọi A

tương tự với bình phương một số

Nguyễn Minh Đức
Xem chi tiết
Bạn Của Nguyễn Liêu Hóa
Xem chi tiết
Phùng Minh Quân
4 tháng 4 2018 lúc 10:03

Ta có : 

C = \(\frac{\left|x+5\right|+\left|7-x\right|+8}{\left|x+5\right|+\left|x-7\right|+3}=\frac{\left|x+5\right|+\left|7-x\right|+3}{\left|x+5\right|+\left|7-x\right|+3}+\frac{5}{\left|x+5\right|+\left|7-x\right|+3}=1+\frac{5}{\left|x+5\right|+\left|7-x\right|+3}\)

Để C đạt GTLN thì \(\frac{5}{\left|x+5\right|+\left|7-x\right|+3}\) phải đạt GTLN hay \(\left|x+5\right|+\left|7-x\right|+3\) phải đạt GTNN 

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)  ta có : 

\(\left|x+5\right|+\left|7-x\right|+3\ge\left|x+5+7-x\right|+3=\left|12\right|+3=12+3=15\)

Dấu "=" xảy ra khi \(\left(x+5\right)\left(7-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x+5\ge0\\7-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-5\\x\le7\end{cases}}}\)

\(\Rightarrow\)\(-5\le x\le7\)

Trường hợp 2 : 

\(\hept{\begin{cases}x+5\le0\\7-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-5\\x\ge7\end{cases}}}\) ( loại ) 

Suy ra : \(C=\frac{\left|x+5\right|+\left|7-x\right|+8}{\left|x+5\right|+\left|x-7\right|+3}=\frac{15+5}{15}=\frac{20}{15}=\frac{4}{3}\)

Vậy \(C_{min}=\frac{4}{3}\) khi \(-5\le x\le7\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
4 tháng 4 2018 lúc 10:13

Mình nhầm đoạn kết luận cho mình xin lỗi nha >.< 

Vậy \(C_{max}=\frac{4}{3}\) khi \(-5\le x\le7\)

Là \(max\) chứ không phải \(min\) nhé 

Chúc bạn học tốt ~ 

Nguyen Thu Trinh
Xem chi tiết
Thắng Nguyễn
16 tháng 6 2016 lúc 15:35

Vì bài dài nên mk làm hơi tắt tí nhé có chỗ nào ko hiểu thì nhắn lại với mình :))

1)  Ta thấy:\(5+\left|x-2\right|\le5+0=5\)\(B=8-\left|x+3\right|\le8-0=8\)

Vậy MaxA=5<=>x=2

2) Ta thấy:\(B=8-\left|x+3\right|\le8-0=8\)

Vậy MaxB=8<=>x=-3

3) Ta thấy:\(2\left|x-3\right|+5\ge0+5=5\)

Vậy MinC=5<=>x=3

4)Ta thấy:\(6-3\left|2x-1\right|\le6-0=6\)

Vậy MaxD=6<=>x=1/2

5)mấy câu 5,6,7 bạn dùng BĐT |a|+|b|>=|a+b| nhé

\(E=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=7\)

Vậy MinE=7<=>x=2 hoặc 5

6)\(F=\left|7-x\right|+\left|x+1\right|\ge\left|7-x+x+1\right|=8\)

Vậy MinF=8<=>x=7 hoặc -1

7)\(H=\left|x+3\right|+\left|x-2\right|\ge\left|x+3-x-2\right|=1\)

Vậy MinH=1<=>x=-3 hoặc 2

8)  I=|7-1|+|-2-1|

I=9 (đề bắt tìm Min và Max sao câu này ko có x nhỉ )

Nguyễn Thanh Tịnh
Xem chi tiết
yennhi tran
12 tháng 6 2018 lúc 15:33

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

Nguyễn Thanh Tịnh
12 tháng 6 2018 lúc 15:36

ko sao cảm ơn

Lê Tuấn Kiệt
12 tháng 6 2018 lúc 15:36

1/ Ta có: A\(=x^2-6x+3\)

\(=x^2-2.x.3+3^2-6\)

\(=\left(x-3\right)^2-6\ge-6\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy Min A  = -6 khi x = 3.

Ta có: B = \(x^2+3x+7\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min B = 19/4 khi x = 3/2.

2/ 

Ta có: \(A=-x^2+4x+8\)

\(=-\left(x^2-4x-8\right)=-\left(x^2-4x+4-12\right)\)

\(=-\left[\left(x-2\right)^2-12\right]\)

\(=-\left(x-2\right)^2+12\le12\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Rightarrow x=2\)

Vậy Max A = 12 khi x =2.

Ta có: \(B=-x^2+3x-5\)

\(=-\left(x^2-3x+5\right)=-\left(x^2-3x+\frac{9}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min B = -11/4 khi x =3/2.

Chúc bn hc tốt!

Đỗ Phương Linh
Xem chi tiết
quang hai Trinh
Xem chi tiết
Higashi Mika
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
27 tháng 1 2021 lúc 10:29

a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12

= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x

Dấu "=" xảy ra khi x = 5/6

Vậy MaxA = 25/12 <=> x = 5/6

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 1 2021 lúc 10:32

b) Từ x + y = 7 => x = 7 - y

Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y

Dấu "=" xảy ra <=> y = 7/2 => x = 7/2

Vậy Max(xy) = 49/4 <=> x = y = 7/2

( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 1 2021 lúc 10:36

c) F = x( x - 3 )( x - 4 )( x - 7 )

= [ x( x - 7 ) ][ ( x - 3 )( x - 4 ) ]

= ( x2 - 7x )( x2 - 7x + 12 )

Đặt t = x2 - 7x

F = t( t + 12 ) = t2 + 12t = ( t2 + 12t + 36 ) - 36 = ( t + 6 )2 - 36

= ( x2 - 7x + 6 )2 - 36 ≥ -36 ∀ x

Dấu "=" xảy ra khi x2 - 7x + 6 = 0 <=> x = 1 hoặc x = 6

Vậy MinF = -36 <=> x = 1 hoặc x = 6

Khách vãng lai đã xóa
Diệu Anh
Xem chi tiết
Toru
23 tháng 10 2023 lúc 18:02

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

HT.Phong (9A5)
23 tháng 10 2023 lúc 17:59

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

『dnv』KhaㅤNguyenㅤ(n0f...
23 tháng 10 2023 lúc 18:05

`#\text{ID01}`

a)

`Q = 9/2 + |2/5 - x|`

Vì `|2/5 - x| \ge 0` `AA` `x`

`=> 9/2 + |2/5 - x| \ge 9/2` `AA` `x`

`=>` GTNN của Q là `9/2` khi `|2/5 - x| = 0`

`=> 2/5 - x = 0`

`=> x = 2/5`

b)

`M = |x + 2/3| - 3/5`

Vì `|x + 2/3| \ge 0` `AA` `x`

`=> |x + 2/3| - 3/5 \ge -3/5` `AA` `x`

`=>` GTNN của M là `-3/5` khi `|x + 2/3| = 0`

`=> x + 2/3 = 0`

`=> x = -2/3`

c)

`N=-|7/4 - x| - 8`

Vì `|7/4 - x| \ge 0` `AA` `x`

`=> -|7/4 - x| \le 0` `AA` `x`

`=> -|7/4 - x| - 8 \le -8` `AA` `x`

`=>` GTLN của N là `-8` khi `|7/4 - x| = 0`

`=> 7/4 - x = 0`

`=> x = 7/4`