Bài 1: Tìm \(C\cap D,C\cup D,C\backslash D,R\backslash C\)
C= (-\(\infty;-\frac{1}{3}\)]; D= {x\(\in\)R/-2<x\(\le\)\(\frac{5}{3}\)}
Bài 2: tập xác định
a) y=\(\frac{20}{3x^2-18}\) b) y= \(\frac{10-2x\sqrt{3-5x}}{\sqrt{3x-1}}\)
Xác định các tập hợp sau và biểu diễn chúng trên trục số:
a) \([ - 3;7] \cap (2;5)\)
b) \(( - \infty ;0] \cup ( - 1;2)\)
c) \(\mathbb{R}\,{\rm{\backslash }}\,( - \infty ;3)\)
d) \(( - 3;2)\,{\rm{\backslash }}\,[1;3)\)
Tham khảo:
a) Đặt \(A = [ - 3;7] \cap (2;5)\)
Tập hợp A là khoảng (2; 5) và được biểu diễn là:
a) Đặt \(A = [ - 3;7] \cap (2;5)\)
Tập hợp A là khoảng (2; 5) và được biểu diễn là:
b) Đặt \(B = ( - \infty ;0] \cup ( - 1;2)\)
Tập hợp B là khoảng \(( - \infty ;2)\) và được biểu diễn là:
c) Đặt \(C = \mathbb{R}\,{\rm{\backslash }}\,( - \infty ;3)\)
Tập hợp C là nửa khoảng \([3; + \infty )\) và được biểu diễn là:
d) Đặt \(D = ( - 3;2)\,{\rm{\backslash }}\,[1;3)\)
Bỏ đi các điểm thuộc [1;3) trong khoảng (-3;2)
Tập hợp D là khoảng \(( - 3;1)\) và được biểu diễn là:
b) Đặt \(B = ( - \infty ;0] \cup ( - 1;2)\)
Tập hợp B là khoảng \(( - \infty ;2)\) và được biểu diễn là:
c) Đặt \(C = \mathbb{R}\,{\rm{\backslash }}\,( - \infty ;3)\)
Tập hợp C là nửa khoảng \([3; + \infty )\) và được biểu diễn là:
d) Đặt \(D = ( - 3;2)\,{\rm{\backslash }}\,[1;3)\)
Bỏ đi các điểm thuộc [1;3) trong khoảng (-3;2)
Tập hợp D là khoảng \(( - 3;1)\) và được biểu diễn là:
Xác định các tập hợp sau và biểu diễn chúng trên trục số.
a) \(( - 4;1] \cap [0;3)\)
b) \((0;2] \cup (- 3;1]\)
c) \(( - 2;1] \cap (1;+ \infty )\)
d) \(\mathbb{R}{\rm{\backslash }}( - \infty ;3]\)
Tham khảo:
a) Ta có:
Giao của hai tập hợp là \(( - 4;1] \cap [0;3) = \left[ {0;1} \right]\)
b) Ta có:
Hợp của hai tập hợp là \((0;2] \cup ( - 3;1] = ( - 3;2]\)
c) Ta có:
Giao của hai tập hợp là \(( - 2;1] \cap (1;+ \infty )= \emptyset\)
d) Ta có:
Phần bù của tập hợp \(( - \infty ;3]\) trong \(\mathbb{R}\) là \(\mathbb{R}{\rm{\backslash }}( - \infty ;3] = (3; + \infty )\)
Xác định các tập hợp sau đây:
a) \((1;3) \cup [ - 2;2]\)
b) \(( - \infty ;1) \cap [0;\pi ]\)
c) \([\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\)
d) \({C_\mathbb{R}}[ - 1; + \infty )\)
Tham khảo:
a) Để xác định tập hợp \(A = (1;3) \cup [ - 2;2]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(A = [ - 2;3)\)
b) Để xác định tập hợp \(B = ( - \infty ;1) \cap [0;\pi ]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(B = [0;1)\)
c) Để xác định tập hợp \(C = [\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(C = [\frac{1}{2};1]\)
d) Để xác định tập hợp \(D = {C_\mathbb{R}}[ - 1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(D = ( - \infty ; - 1)\)
Xác định các tập hợp sau đây:
a) \(( - \infty ;0] \cup [ - \pi ;\pi ]\)
b) \([ - 3,5;2] \cap ( - 2;3,5)\)
c) \(( - \infty ;\sqrt 2 ] \cap [1; + \infty )\)
d) \(( - \infty ;\sqrt 2 ]{\rm{\backslash }}[1; + \infty )\)
Tham khảo:
a) Để xác định tập hợp \(A = ( - \infty ;0] \cup [ - \pi ;\pi ]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(A = ( - \infty ;\pi ]\)
b) Để xác định tập hợp \(B = [ - 3,5;2] \cap ( - 2;3,5)\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(B = ( - 2;2]\)
c) Để xác định tập hợp \(C = ( - \infty ;\sqrt 2 ] \cap [1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(C = [1;\sqrt 2 ]\)
d) Để xác định tập hợp \(D = ( - \infty ;\sqrt 2 ]{\rm{\backslash }}[1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(D = ( - \infty ;1)\)
Tìm phần bù của các tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Xác định các tập hợp sau và biểu diễn chúng trên trục số.
a) \(( - \infty ;1) \cap (0; + \infty )\)
b) \((4;7] \cup ( - 1;5)\)
c) \((4;7]\;{\rm{\backslash }}\;( - 3;5]\)
Tham khảo:
a) Ta có:
Giao của hai tập hợp là \(( - \infty ;1) \cap (0; + \infty ) = (0;1)\)
b) Ta có:
Hợp của hai tập hợp là \((4;7] \cup ( - 1;5) = ( - 1;7]\)
c) Ta có:
Hiệu của tập hợp \((4;7]\) và tập hợp \(( - 3;5]\) là \((4;7]\;{\rm{\backslash }}\;( - 3;5] = (5;7]\)
Cho hai tập hợp: \(A = [0;3]\), \(B = (2; + \infty )\). Xác định \(A \cap B,A \cup B,\)\(A\,{\rm{\backslash }}\,B,B\,{\rm{\backslash }}\,A,\mathbb{R}\,{\rm{\backslash }}\,B.\)
Tham khảo:
+) \(A \cap B = [0;3] \cap (2; + \infty ) = (2;3]\)
+) \(A \cup B = [0;3] \cup (2; + \infty ) = [0; + \infty )\)
+) \(A\,{\rm{\backslash }}\,B = [0;3]\,{\rm{\backslash }}\,(2; + \infty ) = [0;2]\)
+) \(B\,{\rm{\backslash }}\,A = (2; + \infty )\,{\rm{\backslash }}\,[0;3] = (3; + \infty )\)
+) \(\mathbb{R}\,{\rm{\backslash }}\,B = \mathbb{R}\,{\rm{\backslash }}\,(2; + \infty ) = ( - \infty ;2]\)
\(A\cap B=(2;3]\).
\(A\cup B=[0;+\infty)\)
\(\text{A \ B}=\left[0;2\right]\)
\(\text{B \ A}=\left(3;+\infty\right)\)
\(\text{R \ B}=(-\infty;2]\)