Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
19 tháng 8 2017 lúc 21:04

dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra

Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 8 2017 lúc 15:00

bđt phụ sai mà cũng ko đc chuẩn hóa

Witch Rose
23 tháng 8 2017 lúc 18:38

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

Thắng Nguyễn
23 tháng 8 2017 lúc 19:40

SOS cho khỏe :v 

WLOG \(a\ge b\ge c\)

Áp dụng BĐT AM-GM ta có:

\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)

\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)

\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)

\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)

\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)

\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)

Nguyễn Hưng Phát
Xem chi tiết
Nguyễn Thu Hiền
22 tháng 11 2017 lúc 19:18

Mk cx đang định hỏi câu này

Phan Văn Đức
Xem chi tiết
Bùi Thị Vân
20 tháng 8 2016 lúc 8:49

- Ta có: \(b.c< b^2+c^2\), Suy ra:
\(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}>\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{a^2}{a^2+b^2+c^2}=1\).
Vậy: \(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}>1\).
- Giả sử \(a\le b\le c.\)Ta có:
\(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< \frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\)
                                                          \(=\frac{a^2+b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}=1+\frac{c^2}{c^2+a^2}< 1+\frac{c^2}{c^2}=2\).
Vậy: \(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< 2.\)
Vậy ta chứng minh được:
\(1< \frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< 2.\)

Tuấn
20 tháng 8 2016 lúc 15:56

AD cho h ỏi olm của mình bị làm sao vạy ? gửi cau hỏi k đc. đc k k lên điểm ?

Boy9x Đẹp Toàn Phần
20 tháng 8 2016 lúc 16:28

Tự ra câu hỏi tự trả lời thế hỏi làm j ?

Nguyễn Mai
Xem chi tiết
Đặng Ngọc Quỳnh
22 tháng 9 2020 lúc 22:30

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

Khách vãng lai đã xóa
Khánh Vũ Trọng
Xem chi tiết
tth_new
7 tháng 8 2019 lúc 9:08

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Theo BĐT Svacxo:

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)

Vậy ta có đpcm.

P/s: Đúng ko ta?

Witch Rose
Xem chi tiết
Thắng Nguyễn
1 tháng 6 2018 lúc 18:47

\(VT=\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\)

\(=\frac{ab}{ab+\left(a+b+c\right)c}+\frac{ac}{ac+\left(a+b+c\right)b}+\frac{bc}{bc+\left(a+b+c\right)a}\)

\(=\frac{ab}{\left(b+c\right)\left(c+a\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Cần chứng minh \(\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow a^2b+a^2c+ab^2+ac^2+b^2c+bc^2\ge6abc\)

BĐT cuối luôn đúng theo AM-GM

Lê Tài Bảo Châu
Xem chi tiết
Phạm Thành Đông
27 tháng 5 2021 lúc 18:08

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

Khách vãng lai đã xóa
OoO hoang OoO
Xem chi tiết
Thanh Tùng DZ
20 tháng 3 2020 lúc 16:50

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét 2 trường hợp :

+) TH : \(\frac{a^2+16bc}{b^2+c^2}\ge\frac{a^2}{b^2}\)

Dễ thấy \(\frac{b^2+16ac}{c^2+a^2}\ge\frac{b^2}{a^2}\)\(\frac{c^2+16ab}{a^2+b^2}\ge\frac{16ab}{a^2+b^2}\)

Cần chứng minh : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{16ab}{a^2+b^2}\ge10\)

\(\Leftrightarrow\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)+\frac{16}{\frac{a^2+b^2}{ab}}\ge12\)\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+\frac{16}{\frac{a}{b}+\frac{b}{a}}\ge12\)

Đặt \(\frac{a}{b}+\frac{b}{a}=t\)( t \(\ge\)2 )

BĐT trở thành : \(t^2+\frac{16}{t}\ge12\Leftrightarrow t^2+\frac{8}{t}+\frac{8}{t}\ge12\)

Ta có : \(t^2+\frac{8}{t}+\frac{8}{t}\ge3\sqrt[3]{t^2.\frac{8}{t}.\frac{8}{t}}=12\)

+) TH \(\frac{a^2+16bc}{b^2+c^2}< \frac{a^2}{b^2}\Leftrightarrow b^2\left(a^2+16bc\right)< a^2\left(b^2+c^2\right)\)

\(\Leftrightarrow16b^3c< a^2c^2\Leftrightarrow16b^3< a^2c\)

Do \(b\ge c\)nên \(16b^3< a^2c\le a^2b\Rightarrow a^2>16b^2\)

\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}=16+\frac{\left(a^2-16b^2\right)+16c\left(b-c\right)}{b^2+c^2}>16\)

\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}+\frac{b^2+16ac}{c^2+a^2}+\frac{c^2+16ab}{a^2+b^2}>\frac{a^2+16bc}{b^2+c^2}>16>10\)

Bài toán được chứng minh . Dấu "=" xảy ra khi a = b , c = 0 và các hoán vị

P/s : bài này ở trong sách gì mà mk quên rồi

Khách vãng lai đã xóa
Bách Ngô Xuân
4 tháng 3 lúc 23:00

Mình thấy trong sách "Bất đẳng thức cực trị 8 9" của Võ Quốc Bá Cẩn đấy

Làm gì mà căng
Xem chi tiết
HD Film
16 tháng 10 2019 lúc 21:45

\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{bc^2+abc+ba^2}+\frac{c^2}{ca^2+abc+cb^2}\)     (1)

Áp dụng BDT Cauchy-Schwarz: \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc}\)

Lại có: \(ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc=\left(ab+bc+ac\right)\left(a+b+c\right)\)

Thay vào -> dpcm