Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Yến Nhi
Xem chi tiết
Nguyen
5 tháng 7 2019 lúc 21:07

\(A=2\sqrt{6}\)

\(B=2\sqrt{4}=4\)

\(C=2\sqrt{7}\)

Minhh Tâmm
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 12:16

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 22:54

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 22:55

2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)

=0

Shaaaaaa
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 14:44

a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)

b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)

Tran Minh Thu
Xem chi tiết
....
Xem chi tiết
nguyễn duy luân
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết
sonagami rinne
Xem chi tiết
Trần Quốc Lộc
25 tháng 7 2018 lúc 18:44

\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{225}}\)

\(\dfrac{1}{\sqrt{k}}=\dfrac{2}{\sqrt{k}+\sqrt{k}}< \dfrac{2}{\sqrt{k+1}+\sqrt{k}}\\ =\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{225}}\\ < 2\left(\sqrt{226}-\sqrt{225}\right)+2\left(\sqrt{225}-\sqrt{224}\right)+...+2\left(\sqrt{3}-\sqrt{2}\right)\\ =2\left(\sqrt{226}-\sqrt{225}+\sqrt{225}-\sqrt{224}+...+\sqrt{3}-\sqrt{2}\right)\\ =2\left(\sqrt{226}-\sqrt{2}\right)< 2\left(\sqrt{225}-\sqrt{2}\right)< 2\left(\sqrt{225}-\sqrt{1}\right)=28\left(đpcm\right)\)

Vậy \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{225}}< 28\)

nguyễn duy luân
Xem chi tiết
Nguyễn Văn Tuấn Anh
13 tháng 9 2019 lúc 12:24

\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=3-3\sqrt{5}\)

\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:28

a) \(\sqrt{9}-4\sqrt{5}-\sqrt{5}=3-5\sqrt{5}\)

b) \(\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)

c) \(\sqrt{11}-6\sqrt{2}+3+\sqrt{2}=\sqrt{11}-5\sqrt{2}+3\)

Sơn Tùng MTP
20 tháng 10 2019 lúc 9:47

\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=\sqrt{3^2}-4\sqrt{5}-\sqrt{5}=3-5\sqrt{5}\)

\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)

\(c,\sqrt{11}-6\sqrt{2}+3+\sqrt{2}=\sqrt{11}-5\sqrt{2}+3\)

Khách vãng lai đã xóa