Tìm GTLN CỦA BIỂU THỨC 5+\(\frac{15}{4\left|3x+7\right|+3}\)
1)Tìm GTNN của biểu thức :
\(A=\left(2x+\frac{1}{3}\right)^4-10\)
B=/2x-2/3/+(y+1/4)^4-1
b) Tìm GTLN của biểu thức sau:
\(C=-\left(\frac{3}{7}x-\frac{4}{15}\right)^6+3\)
D=-/x-3/-/2y+1/+15
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Tìm Max của biểu thức :
a) A= \(\frac{15}{4.\left|3x+7\right|+3}\)+5
b) B= \(\frac{-1}{3}\)+\(\frac{21}{8.\left|15x-21\right|+7}\)
c) C= |x+1| + |3x-4|+ |2x-1|+5
a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất
Có: \(4.\left|3x+7\right|+3\ge3\forall x\)
Dấu "=" xảy ra khi |3x + 7| = 0
=> 3x + 7 = 0
=> 3x = -7
\(\Rightarrow x=\frac{-7}{3}\)
Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10
Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)
b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất
Có: \(8.\left|15x-21\right|+7\ge7\forall x\)
Dấu "=" xảy ra khi |15x - 21| = 0
=> 15x - 21 = 0
=> 15x = 21
\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)
Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)
Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)
c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)
\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)
hay \(C\ge9\)
Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)
Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)
Tìm
a) GTLN của biểu thức \(A=\frac{12}{2\left|x-2019\right|+3}\)
b) GTNN của biểu thúc \(B=\left|3x+6\right|+4-3x\)
Làm theo cách lớp 7 nhé
a)Tìm GTNN của biểu thức A=\(\left(2x+\frac{1}{3}\right)^4-1\)
b) Tìm GTLN của biểu thứcB=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
CẦN GẤP
Tìm GTLN của biểu thức:
\(D=\frac{\left(x-7\right)}{x-15}\left(x\in Z\right)\)
Mình có một phương pháp giải khác hay! Bạn tham khảo nhé!
\(D=\frac{x-7}{x-15}=\frac{x-15+8}{x-15}=1+\frac{8}{x-15}\)
Do vậy D lớn nhất khi \(\frac{8}{x-15}\) lớn nhất.
Mà \(\frac{8}{x-15}\) lớn nhất khi x - 15 nhỏ nhất ( x-15 > 0 vì nếu x-15 < 0 thì \(\frac{8}{x-15}\) có giá trị âm,nếu x - 15 = 0 thì \(\frac{8}{x-15}\) vô nghĩa)
_ Với x - 15 >0 thì \(x-15\ge1\Rightarrow\frac{8}{x-15}\le8\)
Do đó \(D=1+\frac{8}{x-15}\le1+8=9\)
Dấu "=" xảy ra \(\Leftrightarrow x-15=1\Leftrightarrow x=16\)
Vậy \(D_{max}=9\Leftrightarrow x=16\)
Tìm GTLN của biểu thức sau :
\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
6 là số chẵn nên \(-\left[\frac{4}{9}x-\frac{2}{15}\right]^6\le0\)
=> B ≥ 3
=> GTLN của B = 3 khi x = 3/10
tìm GTLN của biểu thức sau:
\(D=\frac{15}{3\left(2x-1\right)+5}\)
\(D=\frac{15}{3\left|2x-1\right|+5}\)
Đạt GTNN khi | 3 |2x -1 | +5 | đạt GTLN .
\(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|+5\ge5\)
\(\Rightarrow D\ge\frac{15}{5}=3\)
Dấu " = " xảy ra khi và chỉ kih \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Min_D=3\) khi và chỉ khi \(x=\frac{1}{2}\)
Tìm GTLN của biểu thức B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Do \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)
=>\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
=>\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)
=>GTLN của B=3 <=>\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow\frac{4}{9}x=\frac{2}{15}\Leftrightarrow x=\frac{2}{15}:\frac{4}{9}=\frac{2}{15}\cdot\frac{9}{4}=\frac{3}{10}\)