Gọi M,N lần lượt là trung điểm AB và CD.Chứng minh AC+BD+BC+AD=4MN
Cho hình vẽ, biết AB // CD và AB = CD.
a) Chứng minh BC // AD và BC = AD
b) AC cắt BD ở O. Chứng minh O là trung điểm của AC và BD.
c) Gọi M, N lần lượt là trung điểm của AB và CD. BD trát CM và AN lần lượt tại I và J. Chứng minh BI = IJ = JD
cho hình vẽ biết AB song song với CD ; AD song song với BC.
a, chứng minh AB =CD; AD = BC
b,gọi O là giao điểm của AC và BD . Chứng minh O là chung điểm của AC và BD
c,gọi M, N lần lượt là trung điểm của BC và CD ;gọi E,F lần lượt là giao điểm của BD với AM và AN. chứng minh BE=EF=FD
a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)
b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)
c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.
Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.
cho hinh thang cân abcd (ab//cd,ab<cd).goi o là giao diem cua ac va bd,i la giao diem cua ad va bc a) chung minh rang oa=ob,oc=od b) gọi m,n lần lượt là trung điểm cua cac cạnh ab,cd.chứng minh i,m,o,n thăng hàng
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.
\(AD=AC\Rightarrow\)△CAD cân tại A mà AM là trung tuyến.
\(\Rightarrow\)AM cũng là đường phân giác.
\(\Rightarrow\widehat{MAE}=\dfrac{\widehat{BAE}}{2}\left(1\right)\)
\(AE=AB\Rightarrow\)△BAE cân tại A mà AN là trung tuyến.
\(\Rightarrow\)AN cũng là đường phân giác.
\(\Rightarrow\widehat{CAN}=\dfrac{\widehat{CAD}}{2}\left(2\right)\)
Ta có: \(\widehat{BAE}=\widehat{CAD}\) (đối đỉnh), nên từ (1) và (2) suy ra:
\(\widehat{EAM}=\widehat{CAN}\)
Mà \(\widehat{EAM}+\widehat{CAM}=180^0\) (kề bù)
\(\Rightarrow\widehat{CAN}+\widehat{CAM}=180^0\)
\(\Rightarrow\widehat{MAN}=180^0\)
\(\Rightarrow\)M,A,N thẳng hàng.
Cho ∆ ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ điểm D, E sao cho N là trung điểm BD, M là trung điểm CE.
Chứng minh rằng:
a) ∆AND = ∆CNB b) AD = BC; AD // BC c) A là trung điểm ED
Bài 2: Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và AC. Vẽ điểm D và E sao cho N là trung điểm của BD và M là trung điểm của CE. Chứng minh rằng;
a) tam giác AND = tam giác CNB
b) AD = BC; AD // BC. c) A là trung điểm của ED.
(VẼ HÌNH LUÔN NHA!)
a) Xét ΔAND và ΔCNB có
NA=NC(N là trung điểm của AC)
\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)
ND=NB(N là trung điểm của BD)
Do đó: ΔAND=ΔCNB(c-g-c)
b) Ta có: ΔAND=ΔCNB(cmt)
nên AD=BC(hai cạnh tương ứng)
Ta có: ΔAND=ΔCNB(cmt)
nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)
mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Hình thang cân ABCD(AB//CD,AB<CD),O là giao điểm của AC và BD;gọi E là giao điểm của AD Và BC.
a, Chứng minh OA=OB,OC=OD.
b,Gọi M,N lần lượt là trung điểm của các cạnh AB và CD.Chứng minh I, M,N ,O thẳng hàng
Cho tứ giác ABCD, đường chéo BD là đường trung trực của AC. Gọi M, N lần lượt là trung điểm của AD và AB. Vẽ ME⊥BC,NF⊥CD.ME⊥BC,NF⊥CD. Chứng minh ME, NF và AC đồng quy
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.