bài 3 :tìm GTLN của y = \(\frac{x+\sqrt{3}}{\sqrt{x^2+1}}\)
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
toàn 1 lũ hãm điểm
Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm GTLN của A=\(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)
bài này dễ nhưng bạn phải chứng minh bđt này đã:
\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
với a;b;c;d là các số dương
bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)
Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé
ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)
\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)
Tương tự ta cm được
\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)
dấu "=" khi x=y=z
Bài 1 : Tìm GTNN của
P = \(\sqrt{x}+\frac{1}{\sqrt{x}+4}\)
Bài 2 cho x >= 1 , y >=2 . Tìm GTLN của
P = \(\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
Mình nhầm chỗ câu b, sửa lại là :
\(B\ge3\sqrt[3]{\sqrt{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}}\)
Bạn làm tương tự => \(B\ge3\sqrt{2}\).
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
cho các số thực dương tm: \(x+y+z=< \sqrt{3}\) tìm GTLN của M=\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
M=\(\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)
Rút gọn M
Tìm GTLN của M
Cho x;y là số thực không âm; thỏa mãn : x3+y3 +xy =x2 +y2
Tìm GTLN;GTNN của \(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
TÌM X ĐỂ A=1/2
TÌM GTLN CỦA A
MÌNH CẢM ƠN CÁC BẠN ĐÃ TRẢ LỜI HỘ MÌNH NHA !!!
Cho B=\(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
a) Rút gọn B
b) Tính B tại x=\(\frac{2}{2+\sqrt{3}}\)
c) Tìm GTLN của B
\(a,B=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}\right):\left(\frac{1-xy+x+y+2xy}{1-xy}\right)\)
\(B=\frac{\sqrt{x}+\sqrt{y}+x\sqrt{y}+y\sqrt{x}+\sqrt{x}-\sqrt{y}-x\sqrt{y}+y\sqrt{x}}{1-xy}.\frac{1-xy}{1+xy+x+y}\)
\(B=\frac{2\sqrt{x}+2y\sqrt{x}}{x\left(y+1\right)+\left(y+1\right)}\)
\(B=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}\)
\(B=\frac{2\sqrt{x}}{x+1}\)
\(b,B=\frac{2\sqrt{\frac{2}{2+\sqrt{3}}}}{\frac{2}{2+\sqrt{3}}+1}\)
\(\frac{2\sqrt{\frac{4}{4+2\sqrt{3}}}}{\frac{4}{4+2\sqrt{3}}+1}\)
\(B=\frac{2\sqrt{\frac{4}{\left(\sqrt{3}+1\right)^2}}}{\frac{4}{\left(\sqrt{3}+1\right)^2}+1}\)
\(B=\frac{2.2}{\sqrt{3}+1}:\frac{4+2\sqrt{3}}{\sqrt{3}+1}\)
\(B=\frac{4}{\left(\sqrt{3}+1\right)^2}\)
\(B=\left(\frac{2}{\sqrt{3}+1}\right)^2\)
\(c,B=\frac{2\sqrt{x}}{x+1}\)
\(B=\frac{2}{\sqrt{x}+\frac{1}{\sqrt{x}}}\)
ta có :
\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)
dấu "=" xảy ra khi \(x=1\)
\(< =>MAX:B=\frac{2}{2}=1\)
Đk: x \(\ge\)0; y \(\ge\)0; xy \(\ne\)1
Ta có: B = \(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
B = \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{1-xy}\)
B = \(\frac{x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}\cdot\frac{1-xy}{x+y+xy+1}\)
B = \(\frac{2\sqrt{x}+2y\sqrt{x}}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}}{x+1}\)
b) Ta có: \(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4-2\sqrt{3}}{4-3}=4-2\sqrt{3}\)
=> \(x=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)=> \(\sqrt{x}=\sqrt{3}-1\)
Do đó, B = \(\frac{2.\left(\sqrt{3}-1\right)}{4-2\sqrt{3}+1}=\frac{2\sqrt{3}-2}{5-2\sqrt{3}}=\frac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\frac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)
B = \(\frac{6\sqrt{3}+2}{13}\)
c) Ta có: \(\frac{1}{B}=\frac{x+1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\ge2\cdot\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{2\sqrt{x}}}=2\cdot\sqrt{\frac{1}{4}}=1\)(đk: x \(\ne\)0)
=> \(B\le\frac{1}{1}=1\)Dấu "==" xảy ra<=> \(\frac{\sqrt{x}}{2}=\frac{1}{2\sqrt{x}}\) => \(2\sqrt{x}=2\) => \(x=1\)