3.Tính :
a) 50-[30-(6-2)^2]
b) 2^0 + 2^1 + 2^2 + 2^ 3 ............ + 2^100
1) bỏ ngoặc
a)-(2+5)
b)+(-3+6)
c)(-50+3)
d)-(-2+3)
e)-10-3)
f)-(-3)-(-3+1)
g)(-5)+(-2+10)
2)tính nhanh
a)-50+120+(-150)-20+30
b)265-70+(-65)-30+15
c)-17+185-183+(-85)-63
d)-30+60+(-170)-260+19
1)
a) -(2+5) = -2 - 5 = -7
b) +(-3+6) = -3 + 6 = 3
c) (-50+3) = -50 + 3 = -47
d) -(-2+3) = 2 - 3 = -1
e) -(10-3) = -10 + 3 = -7
f) -(-3)-(-3+1) = 3 + 3 - 1 = 5
g) (-5)+(-2+10) = -5 - 2 + 10 = 3
2)
a) -50+120+(-150)-20+30
= -(50 + 20) + (120 + 30 - 150)
= -70
b) 265-70+(-65)-30+15
= (265 - 65) - (70 + 30) + 15
= 200 - 100 + 15 = 115
c) -17+185-183+(-85)-63
= (185 - 85) - (183 + 17) - 63
= 100 - 200 - 63 = -163
d) -30+60+(-170)-260+19
= -(170 + 30) - (260 - 60) + 19
= -200 - 200 + 19 = -381
B1: THỰC HIỆN PHÉP TÍNH
a, A=1+22+24+.................+2100
b, B=(1+2+3+...+90)x (12x34-6x68):(1/3+1/4+1/5+1/6) ( đấu / là đấu a phần b)
c, C=-1/90-1/72-1/50-1/42-1/30-1/20-1/12-1/6-1/2
B2, TÌM X BIẾT
3x/2x-1/+1=(-2)2-3x(-2)3
Bài 1:
a) A=1+22+24+.................+2100
2A=(1+22+24+.................+2100)
2A=2+23+...+2101
2A-A=(2+23+...+2101)-(1+22+24+.................+2100)
A=2101-1
b)bạn tự làm
c) C=-1/90-1/72-1/50-1/42-1/30-1/20-1/12-1/6-1/2
\(=-\left(\frac{1}{90}+\frac{1}{72}+...+\frac{1}{2}\right)\)
\(=-\left(\frac{1}{10.9}+\frac{1}{9.8}+...+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{10}-1\right)\)
\(=-\left(-\frac{9}{10}\right)=\frac{9}{10}\)
Bài 2:
cứ tính lần lượt là ra
bài 7: tính nhanh
a) A = 1 + 2 + 3 + 4 + ... + 50
b) B = 2 + 4 + 6 + 8 + ... + 100
c) C = 1 + 3 + 5 + 7 + ...+ 99
d) D = 2 + 5 + 8 + 11 + ... + 98
e) E = 1 + 2 + 3 + 4 + ... + 25
f) F = 2 + 4 + 6 + 8 + ... + 50
g) G = 3 + 5 + 7 + 9 + ... + 51
h) H = 1 + 5 + 9 + 13 + ... + 81
nhanh nha, giải thik rõ nha, thì mik tick cho
A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861
a) A =1 + 2 + 3 + 4 + … + 50
Số số hạng của dãy số trên là:
(50 - 1) : 1 + 1 = 50 (số số hạng)
A =(1+ 50) . 50 : 2
= 51 . 50 : 2
= 2550 : 2
= 1275
b) B = 2 + 4 + 6 + 8 + ... + 100
Số số hạng của dãy số trên là:
(100 - 2) : 2 + 1 = 50 (số hạng)
Có số cặp là:
50 : 2 = 25 (cặp)
Tổng của 1 cặp là:
100 + 2 = 102
Tổng của dãy số là:
25 .102 = 2550
c) C = 1 + 3 + 5 + 7 + … + 99
Số số hạng của dãy trên là:
(99 - 1) : 2 + 1 = 50 (số số hạng)
C = (1 + 99) . 50 : 2
= 100 . 50 : 2
= 5000 : 2
= 2500
d) D = 2 + 5 + 8 + 11 + … + 98
Số số hạng của dãy trên là:
(98 - 2) : 3 + 1 = 33 (số số hạng)
=> Dãy trên có 16 cặp
D = (95 + 2) .16 + 98
= 97 . 16 + 98
= 1552 +98
= 1650
Tính
346 - [ 124 + 30 : ( 5 ^ 8 : 5^7 ) . 2^2.2018^0]
Bài 2
A = 2+2^2+2^3+2^4+...+2^50
B= 3+3^2+3^3+...+3^50
C= 2^2+2^4+2^6+...+2^50
Bài 2:
a: \(A=2+2^2+2^3+...+2^{50}\)
\(\Leftrightarrow2A=2^2+2^3+2^4+...+2^{51}\)
=>\(A=2^{51}-2\)
b: \(B=3+3^2+3^3+...+3^{50}\)
\(\Leftrightarrow3B=3^2+3^3+...+3^{51}\)
\(\Leftrightarrow2B=3^{51}-3\)
hay \(B=\dfrac{3^{51}-3}{2}\)
c: \(C=2^2+2^4+...+2^{50}\)
\(\Leftrightarrow4C=2^4+2^6+...+2^{52}\)
\(\Leftrightarrow3C=2^{52}-4\)
hay \(C=\dfrac{2^{52}-4}{3}\)
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
Tính nhanh:
a) A= 1 + 2 + 3 + 4 +...+50; b) B = 2 + 4 + 6 + 8 + ...+ 100;
c) C = 1 + 3 + 5 + 7 + ...+ 99; d) D = 2 + 5 + 8 + 11+...+ 98.
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d) Tương tự ta có D = 1650
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
Tính nhanh:
a) A= 1 + 2 + 3 + 4 +...+50;
b) B = 2 + 4 + 6 + 8 + ...+ 100;
c) C = 1 + 3 + 5 + 7 + ...+ 99;
d) D = 2 + 5 + 8 + 11+...+ 98
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d) Tương tự ta có D = 1650
So sánh
\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)
\(b,2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
\(c,2^0+2^1+2^2+...+2^{50}v\text{à}2^{51}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)
\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)
Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)
hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
a , so sánh lũy thừa 2^50 và 3^40 , 2^30 và 3^40 , 4^30 và 5^ 20 , 4^5 và 8^3
b tính tổng s = 1+3+5+...+51
s=2+4+6+..+50
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51