Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
balabasiem
Xem chi tiết
Đào Thị Thùy Dương
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Đỗ quang Hưng
8 tháng 4 2017 lúc 21:25

mình ko biết nhưng các bạn k mình nha mình đang âm

conandoyle
8 tháng 4 2017 lúc 21:26

k mình nha

Hồ Trọng Dương
8 tháng 4 2017 lúc 21:47

Vì | x + 1 |>0 hoặc =0

Suy ra : 5 - | x + 1 | < hoặc = 5

Suy ra : A < hoặc = 0

Suy ra : Amax = 5 khi & chỉ khi x + 1 = 0

suy ra : x = -1

Vậy Amax = 5 khi & chỉ khi x = -1

Nguyễn Bảo Nhi
Xem chi tiết
Trà My
18 tháng 5 2016 lúc 10:00

\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)

\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)

\(M=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\) với mọi x

=>\(\left(x+1\right)^2+1\ge1\) với mọi x

=>GTNN của M là 1

Dấu "=" xảy ra <=> x+1=0<=>x=-1

Thắng Nguyễn
18 tháng 5 2016 lúc 9:58

Mmin=1 khi x=-1

Thắng Nguyễn
18 tháng 5 2016 lúc 10:00

a haha đoán bừa mà cũng đúng

Nguyễn Thùy Linh
Xem chi tiết
Hoàng Lê Bảo Ngọc
4 tháng 9 2016 lúc 16:36

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

Vân Anh Đỗ
Xem chi tiết
tth_new
2 tháng 1 2019 lúc 17:48

1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)

Vậy đề sai ~v  (hay là tui làm sai ta)

tth_new
2 tháng 1 2019 lúc 17:50

1b) \(B=3\left|1-2x\right|-5\ge0-5=-5\)  (do \(\left|1-2x\right|\ge0\forall x\))

Dấu "=" xảy ra khi \(\left|1-2x\right|=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy \(B_{min}=-5\Leftrightarrow x=\frac{1}{2}\)

TuiTenQuynh
2 tháng 1 2019 lúc 17:50

@tth T làm cũng ra như vậy @@

Taeyeon x Baekhyun
Xem chi tiết
Ahwi
25 tháng 12 2018 lúc 18:00

\(A=x^2-2x+4\)

\(A=x^2-2x+1+3=\left(x-1\right)^2+3\ge3\)

dấu = xảy ra khi x-1=0

=> x=1

Vậy MinA=3 khi x=1

°𝗝𝗲𝘆シ︎°
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 23:17

3: 

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

Phạm Tường Lan Vy
Xem chi tiết
Trần Gia Kỳ An
Xem chi tiết
Đỗ Thanh Tùng
4 tháng 7 2016 lúc 21:12

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

Đỗ Thanh Tùng
4 tháng 7 2016 lúc 21:04

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Đỗ Thanh Tùng
4 tháng 7 2016 lúc 21:06

B2: \(\Rightarrow16x^2-8x-\left(16x^2-8x+1\right)-13\Rightarrow16x^2-8x-16x^2+8x-1-13\Rightarrow-14\)