Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đậu Minh Thắng
Xem chi tiết
Kim Lê Khánh Vy
Xem chi tiết
ST
27 tháng 7 2018 lúc 19:09

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left[\left(z-y\right)+\left(y-x\right)\right]\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-y\right)-x^2z^2\left(y-x\right)\)

\(=\left(y-x\right)\left(x^2y^2-x^2z^2\right)+\left(z-y\right)\left(y^2z^2-x^2z^2\right)\)

\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(y+x\right)\)

\(=\left(y-x\right)\left(z-y\right)\left(-x^2y-x^2z+z^2y+z^2x\right)\)

\(=\left(y-x\right)\left(z-y\right)\left[xz\left(z-x\right)+y\left(z-x\right)\left(z+x\right)\right]\)

\(=\left(y-x\right)\left(z-y\right)\left(z-x\right)\left(xy+yz+xz\right)\)

Nguyễn Hoàng Tú
Xem chi tiết
Viet Xuan
10 tháng 11 2021 lúc 15:05

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

Zoro_Mắt_Diều_Hâu
Xem chi tiết
Đào Lê Anh Thư
26 tháng 7 2017 lúc 21:29

\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=x\left(y^2-z^2\right)-y\left(y^2-z^2+x^2-y^2\right)+z\left(x^2-y^2\right)\)

\(=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

chúc bn hc tốt ^^ 

Duyên Nấm Lùn
Xem chi tiết
Hoàng Lê Bảo Ngọc
4 tháng 10 2016 lúc 22:33

\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left[-\left(z^2-x^2\right)-\left(x^2-y^2\right)\right]+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=-x\left(z^2-x^2\right)+y\left(z^2-x^2\right)-x\left(x^2-y^2\right)+z\left(x^2-y^2\right)\)

\(=\left(z^2-x^2\right)\left(y-x\right)+\left(x^2-y^2\right)\left(z-x\right)\)

\(=\left(y-x\right)\left(z-x\right)\left(z+x\right)+\left(z-x\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(x+y-z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

Đặng Tiến Hải
Xem chi tiết
Strange
Xem chi tiết
Hoàng Trung Đức
Xem chi tiết
Viet Xuan
10 tháng 11 2021 lúc 15:05

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

Tên của bạn
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 10:44

Ta có :

P = x2 . ( y - z ) + y2z - xy2 + xz2 - yz2

= x2 . ( y - z ) + yz . ( y - z ) - x . ( y2 - z2 )

= ( y - z ) . ( x2 + yz - xy - xz )

= ( y - z ) . [ x . ( x- y ) - z . ( x - y ) ]

= ( y - z ) . ( x - y ) . ( x - z )