\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left[-\left(z^2-x^2\right)-\left(x^2-y^2\right)\right]+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=-x\left(z^2-x^2\right)+y\left(z^2-x^2\right)-x\left(x^2-y^2\right)+z\left(x^2-y^2\right)\)
\(=\left(z^2-x^2\right)\left(y-x\right)+\left(x^2-y^2\right)\left(z-x\right)\)
\(=\left(y-x\right)\left(z-x\right)\left(z+x\right)+\left(z-x\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(z-x\right)\left(x+y-z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)