phân tích thành nhân tử:
A)\(p^2-2pa+q^2-9\)
B) \(\left(a+3b\right)^2+\left(a^2+9\right)^2\)
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^2} - 1\)
b) \({\left( {x + 2} \right)^2} - 9\)
c) \({\left( {a + b} \right)^2} - {\left( {a - 2b} \right)^2}\)
a) \(4x^2-1=\left(2x+1\right)\left(2x-1\right)\)
b) \(\left(x+2\right)^2-9=\left(x-1\right)\left(x+5\right)\)
c) \(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left(a+b-a+2b\right)\left(a+b+a-2b\right)\)
\(=3b\left(2a-b\right)\)
`a, 4x^2-1 = (2x+1)(2x-1)`
`b, (x+2)^2-9 = (x+2-3)(x+2+3) = (x-1)(x+5)`
`c, (a+b)^2-(a-2b)^2 = (a+b+a-2b)(a+b-a+2b) = (2a-b)(3b)`
Phân tích các đa thức sau thành nhân tử:
a) \({x^3} + 4x\)
b) \(6ab - 9a{b^2}\)
c) \(2a\left( {x - 1} \right) + 3b\left( {1 - x} \right)\)
d) \({\left( {x - y} \right)^2} - x\left( {y - x} \right)\)
`a, x^3 + 4x = x(x^2+4)`
`b, 6ab - 9ab^2 = 3ab(2-b)`
`c, 2a(x-1) + 3b(1-x)`
`= (2a-3b)(x-1)`
`d, (x-y)^2 - x(y-x)`
`= (x-y+x)(x-y)`
`= (2x-y)(x-y)`
phân tích thành nhân tử
a, \(36a^2-\left(a^2-9\right)^2\)
b \(\left(a+36\right)^2+\left(a+9\right)^2\)
Phân tích thành nhân tử:
\(\left(3a-2b\right)^3-\left(2a-3b\right)\left(ab-6\right)^2-\left(2b-3a\right)^2\left(a+b\right)\)
Bài 1: Phân tích đa thức thành nhân tử:
a) \(5x\left(x-10\right)-2x+2x+20\)
b) \(a\left(a-b\right)^2\left(a+b\right)-\left(b-a\right)^2\left(a^2-5ab+b^2\right)\)
c) \(\left(a-b\right)^{2-\left(b-a\right)\left(a-3b\right)}\)
\(5x.\left(x-10\right)-2x+2x+20\)
\(=5x^2-50x+20\)
\(=5\left(x^2-10x+5^2-21\right)\)
\(=5\left[\left(x-5\right)^2-\left(\sqrt{21}\right)^2\right]\)
\(=5\left(x-5-\sqrt{21}\right)\left(x-5+\sqrt{21}\right)\)
\(a\left(a-b\right)^2\left(a+b\right)-\left(b-a\right)^2\left(a^2-5ab+b^2\right)\)
\(=a\left(a-b\right)^2\left(a+b\right)-\left(a-b\right)^2\left(a^2-5ab+b^2\right)\)
\(=\left(a-b\right)^2\left[a.\left(a+b\right)-a^2+5ab-b^2\right]\)
\(=\left(a-b\right)^2\left[a^2+ab-a^2+5ab-b^2\right]\)
\(=\left(a-b\right)^2\left(6ab-b^2\right)\)
Sửa đề: \(\left(a-b\right)^2-\left(b-a\right)\left(a-3b\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\left(a-3b\right)\)
\(=\left(a-b\right)\left(a-b+a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2.\left(a-b\right)\left(a-2b\right)\)
Tham khảo nhé~
Phân tích các đa thức sau thành nhân tử:
a) \(4{a^2} + 4a + 1\)
b) \( - 3{x^2} + 6xy - 3{y^2}\)
c) \({\left( {x + y} \right)^2} - 2\left( {x + y} \right)z + {z^2}\)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
Phân tích đâ thức thành nhân tử
a)\(x^2-8y^2+6x+9\)
b)\(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
a) \(x^2-8y^2+6x+9\)
\(=\left(x^2+6x+9\right)-8y^2\)
\(=\left(x+3\right)^2-\left(\sqrt{8}\cdot y\right)^2\)
\(=\left(x+3+\sqrt{8}y\right)\left(x+3-\sqrt{8}y\right)\)
phân tích đa thức thành nhân tử
a , \(\left(x-3\right)^2-\left(4x+5\right)^2-9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
Rút gọn thôi chứ phân tích sao được ._.
( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )
= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )
= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18
= -30x2 - 52x - 7
Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))
Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)
\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)
\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)
\(=\left(4x+7\right)\left(12x+17\right)\)
Phân tích đa thức sau thành nhân tử:
a) \(x^2-2xy+3x-3y+y^2-4\)
b) \(2\left(x^2-6x+1\right)^2+5\left(x^2-6x+1\right)\left(x^2+1\right)+2\left(x^2+1\right)^2\)
a: \(x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2+3\left(x-y\right)-4\)
\(=\left(x-y+4\right)\left(x-y-1\right)\)