(4x+1)^2-16x^2=14-2
Tìm x:
( 4x + 1 )( 16x^2 - 4x + 1 ) - 16x ( 4x^2 - 5 ) = 17
Tính giá trị biểu thức:
p=(x+1)(x^2-x+1)+x-(x-1)(x^2+x+1)+2010; x=-2010)
q=16x(4x^2-5)-(4x+1)(16x^2-4x+1); x=1/5
\(p=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2010\)\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2010=x^3+1+x-x^3+1+2010=x+2012\)Với \(x=-2010\Rightarrow p=-2010+2012=2\)
\(q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)=64x^3-80x-64x^3-1=-80x-1\)Với \(x=\dfrac{1}{5}\Rightarrow q=-80.\dfrac{1}{5}-1=-17\)
(4x+1)(16x^2-4x+1)-16x (4x^2-5)=17
16x (4x²-5) + 17 = (4x + 1) (16x²-4x + 1)
64x³-80x + 17 = 64x³ + 1
64x³-64x³ = 1-17-80x
-80x = -16
x = -16 / ( -80)
x = 0,2
(4x+1)(1-4x+16x^2) - 16x(4x^2-5) = 17 tim x
\(\left(4x+1\right)\left(1-4x+16x^2\right)-16x\left(4x^2-5\right)=17\)
\(\Leftrightarrow4x-16x^2+64x^2+1-4x+16x^2-64x^2+80x-17=0\)
\(\Leftrightarrow\left(-16x^2+16x^2\right)+\left(64x^2-64x^2\right)+\left(4x-4x\right)+80x+1-17=0\)
\(\Leftrightarrow80x=16\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
Cho 3x^2+y^2+2xy-16x-4y+22=0 . Tính D= 1/𝑥𝑦
Cho 4x^2+2y^2+z^2+14=2(xz+ỹ+5x+4y) . Tính E=x+y+z
tìm x : (4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3 + 1 - 64x^3 + 80x =17
80x =16
x =3/10
64x^3 + 1 -64x^3 + 80x = 17
80x = 16
x = 3/10
64x^3 + 1 - 64x^3 + 80x = 17
80x = 16
x = 3/10
38. Chọn câu sai:
A. 16x^2 (x-y) - x + y= (2x-1) (2x+1)(4x^2+1)(x-y)
B. 16x^3 - 54y^5 = 2(2x -3y) (4x^2 + 6xy + 9y^2)
C. 16x^5 - 54y = 2(2x-3y) (2x + 3y)^2
D. 16x^4 (x-y) - x + y = (4x^2 -1 (4x^2 +1) (x-y)
cho M =
cho M =\(\frac{4x^6-16x^{ }+16x^2}{x^8+28x^4+16}\)và\(\frac{2x^3-14^{ }+42}{x^4+2x^2+2x^2-4x+149}=\frac{42}{145}\)
Tính M
a) \(4x^2+16x+3=0\)
\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)
b) \(7x^2+16x+2=1+3x^2\)
\(4x^2+16x+1=0\)
\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)
c) \(4x^2+20x+4=0\)
\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)
\(\Leftrightarrow x^2+5x+1=0\)
\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)
C) 5x-(4-2x+x^2)(x+2)+x (x-1)(x+1)=0
D) (4x+1)(16x^2-4x+1)-16x (4x^2-5)=17
giải
5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0
5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0
5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0
(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0
4x+(-8)=0
4x=0+8
4x=8
x=8:4
x=2
D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17
80x+1=17
80x=17-1
80x=16
x=1/5
\(5x-\left(4-2x+x^2\right)\left(x+2\right)+x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow5x-\left(4x-2x^2+x^3+8-4x+2x^2\right)+\left(x^2-x\right)\left(x+1\right)=0\)
\(\Rightarrow5x-\left(4x-2x^2+x^3+8-4x+2x^2\right)+\left(x^3+x-x^2-x\right)=0\)
\(\Rightarrow5x-4x+2x^2-x^3-8+4x-2x^2+x^3+x-x^2-x=0\)
\(\Rightarrow4x-8=0\Rightarrow4x=8\Rightarrow x=2\)