Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Tue Tam
Xem chi tiết
YangSu
16 tháng 6 2023 lúc 10:22

\(a,DKXD:x\ge0\)

\(b,A=\sqrt{x-\sqrt{x^2-4x+4}}\)

\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)

\(=\sqrt{x-\left|x-2\right|}\)

\(=\sqrt{x-\left(x-2\right)}\)

\(=\sqrt{x-x+2}\)

\(=\sqrt{2}\)

See you again
Xem chi tiết
Nyatmax
24 tháng 8 2019 lúc 12:17

a.\(DKXD:x\ge1\)

b.\(A=\sqrt{x-\sqrt{x^2-4x+4}}=\sqrt{x-\sqrt{\left(x-2\right)^2}}=\sqrt{x-|x-2|}=\orbr{\begin{cases}\sqrt{2}\left(x\ge2\right)\\2x-2\left(1\le x< 2\right)\end{cases}}\)

hưngchibi
Xem chi tiết
Thiên Đạo Pain
29 tháng 6 2018 lúc 15:11

dk , x  lơn hơn hoặc = 0  , x khác 4

\(\frac{\sqrt{x}}{\sqrt{x-2}}\times\frac{x-4}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+2}}\times\frac{x-4}{2\sqrt{x}}.\)

có  \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x}-2}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

rút gọn 

\(\frac{\left(\sqrt{x}+2\right)}{2}+\frac{\left(\sqrt{x}-2\right)}{2}\)

\(\frac{2\sqrt{x}}{2}\)

Valentine
Xem chi tiết
Phạm Thị Thùy Linh
20 tháng 8 2019 lúc 20:52

\(đkxđ\Leftrightarrow x\ge\sqrt{x^2-4x+4}\)\(\Rightarrow x\ge|x-2|\Rightarrow x\ge0\)

\(A=\sqrt{x-\sqrt{x^2-4x+4}}.\)

\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)

\(=\sqrt{x-|x-2|}=0\)

Nếu \(x\ge2\Rightarrow A=\sqrt{x-\left(x-2\right)}=\sqrt{x-x+2}=\sqrt{2}\)

Nếu \(0\le x< 2\Rightarrow A=\sqrt{x-\left(2-x\right)}=\sqrt{2x-2}\)

ngan kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 12:37

Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

Hà Quang Minh
5 tháng 8 2023 lúc 12:38

Điều kiện: x>2, \(x\ne4\)

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right):\dfrac{2\sqrt{x}}{x-4}\\ \Rightarrow A=\sqrt{x}\cdot\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}}\cdot\dfrac{x-4}{2\sqrt{x}}\\ \Rightarrow A=\dfrac{\left(x-4\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)}{2\sqrt{x^2-4}}\)

Huỳnh Như
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 11:14

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)

\(M=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(M=\dfrac{-8\sqrt{x}}{x-4}\)

\(M< 0\Leftrightarrow-\dfrac{8\sqrt{x}}{x-4}< 0\Leftrightarrow x-4>0\Leftrightarrow x>4\)

Vân Nguyễn
Xem chi tiết
Hoàng Anh Tú
11 tháng 9 2015 lúc 21:02

quy đồng lên là xong. Rút gọn nữa

Lê Thanh Ngọc
Xem chi tiết
thanh hoa
Xem chi tiết
Trúc Giang
12 tháng 7 2021 lúc 21:19

a) a ≠ 1; a ≥ 0

\(\dfrac{a-5\sqrt{a}+4}{a-1}=\dfrac{a-\sqrt{a}-4\sqrt{a}+4}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)-4\left(\sqrt{a}-1\right)}{a-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)

b) a ≥ 0; \(x\ne\pm\sqrt{3}\)

\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=\dfrac{1}{x-\sqrt{3}}\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 21:17

1) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

Ta có: \(\dfrac{a-5\sqrt{a}+4}{a-1}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\sqrt{3}\end{matrix}\right.\)

Ta có: \(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\)

\(=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

tranthuylinh
Xem chi tiết
Chuyên Toán
18 tháng 8 2021 lúc 13:16

a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)  \(\left(ĐKXĐ:x\ge0\right)\)

\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)

\(\text{​​}\text{​​}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)

\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)

c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)

\(\Leftrightarrow x-\sqrt{x}+1>x\)

\(\Leftrightarrow x< 1\)

 

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 13:55

a: ĐKXĐ: \(x\ge0\)

Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)