giải pt căn(x+1)+2(x+1)=x-1+ căn(1-x) + 3căn(1-x^2)
Giải hệ này giùm mình ạ
căn(x+2) + 3căn(y-1) = căn 5(x^2 + y^2 -3)(1)
(2x-1)^2 + (2y -1)^2 =18 (2)
pt2 <=> 4x^2 -4x+1+4y^2 -4y+1=18
<=>x^2+y^2-3=x+y+1
thay vào pt 1 ta đk
căn (x+2) +3 căn ( y-1) =căn ( 5(x+y+1))
đặt căn (x+2)=a căn (y-1)=b
pt1 <=> a+3b=căn (5a^2+5b^2)
bình phương hai vế ta đk
a^2 +6ab+9b^2 =5a^2+5b^2
<=>4a^2-6ab-4b^2=0
<=>(2a+b)(a-2b)=0
sau đó bạn giải từng trường hợp rồi thay ngược lại pt 2 mà giải ra x với y
Tìm giá trị nhỏ nhất: a) 3x² - 5x
b) x- căn x ( x>= 0)
c) x- 3căn x + 1 ( x>=0)
D) x - 4căn x - 7 ( x>=0)
E) x - căn x-1 + 1 ( x>=1)
Tìm giá trị lớn nhất
A) -x + căn x +2 (x>=0)
B) -x + căn x ( x>=0)
C). -x + 3căn x + 2. (x>=0)
D). -x + 2căn x - 5. ( x>=0)
E). -x + căn x-1. ( x>=1)
Giải các pt sau:
1)x- căn 2x-5=4
2)căn 2x² - 8x +4=x -2
3)căn x²+ x -12=8- x
4)căn x² - 3x -2= căn x -3
5)căn 2x + 1=2 + căn x - 3
6)căn x +2 căn x-1 -căn x - 2 căn x-1=-2
7) căn x-2 +căn x+3 =5
8) căn x² -4x +3 + x² -4x =-1
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
4) ĐK: \(x\ge3\)
pt <=> \(x^2-3x-2=x-3\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\left(n\right)\\x=2-\sqrt{3}\left(l\right)\end{matrix}\right.\)
giải pt:
x-căn x-1-(x-1)căn x+căn x^2-x=0
A=(căn củax/3+căn củax+2x/9-x):(cănx-1/
x-3căn của x-2/căn của x) ( x>0,x khác 9,x khác 25
1 ) giải pt căn 10 -x cộng căn x+3 = x bình - 2x +6
2) giải pt căn x+1 cộng căn x+6 trừ căn x-2 = 4
3) cho pt ( x-2) × ( x bình + m x +m -1 ) = 0 . Tìm m để pt có 3 ng pb
4 ) cho pt x × ( x+1) × ( x+2) × ( x+3) = m . Tìm m để pt đã cho có nghiệm
Giải pt:
1) Căn(x^2 - x + 2) + 1 = căn(10 - x^2 + x)
2) 4căn(x) - 2 căn(2 - x) + x - 4 căn( 2x - x^2) + 1 =0
3) x^2 + 3x - 1= (x+2) căn(x^2 + x - 1)
4) 3x^2 + 4x + 2 = 3(x+2) căn(x^2 - 1)
2x+(x-1):x-căn[1-(1:x)]-3căn[x-(1:x)]=0
giúp mình với giải pt : căn bậc hai(9 x (x^2 -1)) +căn bậc hai(4 x (x^2-1)) = căn bậc hai (16 x ( x^2-1)) +2