CMR:
a)74n-1 chia hết cho 5
b)34n+1+2 chia hết cho 5
c)92n+1+1 chia hết cho 10
d)24n+2+1 chia hết cho 5
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
chung minh rang moi so n de: a) 74n - 1 chia het cho 5
b) 34n + 1 + 2 chia het cho 5
c) 24n + 1 + 3 chia het cho 5
d) 92n + 1 + 1 chia het cho 10
viết lại đề cho chuẩn
nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...
a)
\(74^n-1\) đề sai vơi n lẻ không chia hết cho 5 xem lại và viết cho chuẩn đi
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Trong các số sau số nào chia hết cho 2, cho 5, cho 10
a,34n+1+1 (n∈N)
b, 24n+1-2 (n∈N)
c, 22n+4(n∈N,N>2)
d, 94n-6(n∈N,n>1)
Lời giải:
Ta thấy \(2^{4n+2}-2=2(2^{4n}-1)=2(16^n-1)\)
$16\equiv 1\pmod 5\Rightarrow 16^n\equiv 1\pmod 5$
$\Rightarrow 16^n-1\equiv 0\pmod 5$
$\Rightarrow 16^n-1\vdots 5$
$\Rightarrow 2(16^n-1)\vdots 10$
Vậy đáp án b.
a) 6100 - 1 chia hết cho 5
b) 2120 - 1110 chia hết cho 2 và 5
c)3 + 32 + 33 +....+ 360 chia hết cho 4 và 13
giúp mình nha/Mình cảm mơn trc
a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5
b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
Lời giải:
a)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)
\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)
\(\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
b)
\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$
Mặt khác:
Nếu $n=3k+1$:
$2^{2n+2}+24n+14=2^{6k+4}+72k+38$
$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$
Nếu $n=3k$:
$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$
$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$
Nếu $n=3k+2$:
$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$
$\equiv 63+72k\equiv 0\pmod 9$
Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)
Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18