201×201×203×.....×600 chia hết cho 2 mũ 300
Nhanh nha minh thả ❤
chứng minh rằng B=5+5^3+5^5+...+5^201+2^203 chia hết cho 31
=(5+5^3+5^5)+...+5^199+5^201+5^203)=
5*(1+5^2+5^4)+...+5^199*(1+5^2+5^4)=
5*651+...+5^199*631=
631*(5+5+5+...+5)=
31*21*(5+5+...+5) chia hết cho 31
=(5+5^3+5^5)+...+5^199+5^201+5^203)=
5*(1+5^2+5^4)+...+5^199*(1+5^2+5^4)=
5*651+...+5^199*631=
631*(5+5+5+...+5)=
31*21*(5+5+...+5) chia hết cho 3
CMR:
a, 101 x 102 x 103 x..x 200 chia hết cho 1 x 3 x 5 x...x 199.
b, 201 x 202 x 203 x...x 600 chia hết cho 3200
cmr 3 + 3^2 + 3^5 +...+ 3^201 + 3^203 chia hết cho 41
Giải
Đặt biểu thức trên = K
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
\(K=\left(1+3^2+3^4+3^6\right).\left(1+3^8+3^{16}+...+3^{1984}\right)\)
\(=820.\left(1+3^8+3^{16}+...+3^{1984}\right)\)
Do 820 \(⋮\) 41 nên P cũng \(⋮\) 41
tính tổng sau : 1+2-3+4-5+...+200-201+202-203+600
làm nhanh giúp mk nha ^^
\(1+2-3+4-5+....+200-201+202-203+600\)
\(=1+\left(2-3\right)+\left(4-5\right)+....+\left(200-201\right)+\left(202-203\right)+600\)
\(=1+\left(-1\right)+\left(-1\right)+....+\left(-1\right)+\left(-1\right)+600\) ( có 101 số -1 )
\(=1+\left(-1\right).101+600=\left(-1\right).100+600=-100+600=500\)
=1+(2+4+....+200)-(3+5+...+201)+600=1+100*202/2-100*204/2+600=601+100*101-100*102=601+100*(101-102)=501
chứng minh:b=2 mũ 1+2 mũ 2+2 mũ 3+2 mũ 4+...+2 mũ 200+2 mũ 201
b chia hết cho 7
\(B=2^1+2^2+2^3+2^4+...+2^{200}+2^{201}\)\(\Rightarrow B=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)+...+2^{199}\left(1+2^1+2^2\right)\)
\(\Rightarrow B=2.7+2^4.7+...+2^{199}.7\)
\(\Rightarrow B=7.\left(2+2^4+...+2^{199}\right)⋮7\Rightarrow dpcm\)
cho :
A = 201/202 + 202/203 + 203/204
B= 201 + 202 +203 / 202 + 203 +204
so sánh A và B
ghi cả lời giải nha !!!
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)+ \(\frac{202}{202+203+204}\)+ \(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204 nên \(\frac{201}{202}\)>\(\frac{201}{202+203+204}\)(1)
Vì 203 < 202 + 203 + 204 nên \(\frac{202}{203}\)> \(\frac{202}{202+203+204}\)(2)
Vì 204 < 202 + 203 + 204 nên \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)(3)
Cộng vế vơi vế của (1) , (2) và (3)
=>\(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
CMR
\(A=3+3^2+3^5+...+3^{201}+3^{203}\)
a. A chia hết cho 13
b . A chia hết cho 41
Tham khảo bài tương tự nhé !
Ta đặt biểu thức trên là S
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41
P có 996 số hạng
Nhóm P thành từng bộ 3 số hạng
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4)
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986)
= 91 x (1 + 3^6 + .... + 3^1986)
Do 91 chia hết cho 13 nên P cũng chia hết cho 13
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984)
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984)
Do 820 chia hết cho 41 nên P cũng chia hết cho 41
*(a^n-1)=(a-1)(1+a+a^2+..+a^(n-1))
=>1+a+a^2+...+a^(n-1)=(a^n-1)/(a-1)
*a^(n.m)=(a^n)^m.
Ta có:
S=3+3^3+...+3^1991=
=3(1+3^2+3^4+...+3^1990)
=3(1+9+9^2+...+9^995)
=3(9^996-1)/8
=3P/8.
với P=9^996-1.
vì 13 và 8 là 2 số ngyuên tố cùng nhau, tương tự 41 và 8 là 2 số nguyên tố cùng nhau, nên ta chỉ cần cm P cha hết cho 13 và 41.
a) ta có:
P=9^996-1=
=(3^2)^996-1
=3^1992-1
=(3^3)^664-1
=27^664-1
=(27-1)(1+27^2+...+27^663)
=26(1+27^2+..+27^663)
mà 26 chia hết cho 13, nên P chia hết cho 13.
b)ta lại có:
P=9^996-1=
=(9^4)^249-1
=6561^249-1
=(6561-1)(1+...+6561^248)
=6560(1+6561+...+6561^248)
thấy 6560 chia hết cho 41 nên P chia hết cho 41.
Với cách này ta còn cm được S chia hết cho rất nhiều số khác nữa.
C/m rằng:
5203+5202+5201 chia hết cho 31
5203 + 5202 + 5201 = 5201 x 52 + 5201 x 5 + 5201 = 5201(52+5+1) = 5201 x 31 chia hết 31
cho mik nha bn
Ta có:
5^203+5^202+5^201
=5^200*(5^3+5^2+5^1)
=5^200*155=5^200*5*31
=>chia hết cho 31
5203+5202+5201=5201.(1+5+52)=5201.31 chia hết cho 31
=>đpcm
Cho A=201/202+202/203+203/204 và B= 201+202+203/202+203+204
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)\(+\)\(\frac{202}{202+203+204}\)\(+\)\(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204
=> \(\frac{201}{202}\)> \(\frac{201}{202+203+204}\)( 1 )
Vì 203 < 202 + 203 + 204
=> \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)( 2 )
Vì 204 < 202 + 203 + 204
=> \(\frac{203}{204}\)> \(\frac{203}{202+203+204}\)( 3 )
Cộng vế với vế của ( 1 ), ( 2 ) và ( 3 )
=> \(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B