(x-2y+3z).(x+2y+(x+2y)2
tính tổng S = x + 2y + 3z biết rằng 1/(x+ 2y) + 1/(2y+3z)+1/(x+3z)= 12x/(2y+3z)+24y/(x+3z)+ 36z/(x+2y)=2016
rut gọn cac biểu thưc
a)(x-2y)(x+2y)+(x+2y)^2
b)(x^2-xy+y^2)(x^2+xy+y^2)
c)(x-2y+3z)(x+2y-3z)
Bài 1 : Tìm x , y , z biết : x +2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
Bài 1 : Tìm x , y , z biết : x + 2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
Đặt \(x+2y+3z=A\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)
\(\Rightarrow A=\frac{2A}{2A-9}\)
\(\Rightarrow\frac{2}{2A-9}=1\)
\(\Rightarrow2A-9=2\)
\(\Rightarrow A=\frac{11}{2}\)
Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)
\(\Rightarrow8y=44y-33\)
\(\Rightarrow36y=33\)
\(\Rightarrow y=\frac{11}{12}\)
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)
\(\Rightarrow4x=22x-33\)
\(\Rightarrow18x=33\)
\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)
\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)
\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)
Vậy ...
Cho mình bổ sung : \(TH2:A=0\)
\(\Rightarrow2x=4y=6z=0\)
\(\Rightarrow x=y=z=0\)
Vậy ....
Tinh tong : S= x+2y +3z, biet rang : \(\frac{1}{x+2y}+\frac{1}{2y+3z}+\frac{1}{3z+z}=\frac{12x}{2y+3z}+\frac{24y}{3z+x}-\frac{36z}{x+2y}=2016\)
1. Tính tổng: S = x+ 2y+3z, biết rằng:
\(\dfrac{1}{x+2y}+\dfrac{1}{2y+3z}+\dfrac{1}{3z+x}=\dfrac{12x}{2y+3z}+\dfrac{24y}{3z+x}+\dfrac{36z}{x+2y}=2016\)
bạn chịu khó suy nghĩ chút sẽ ra bài này dễ mà
Tìm x,y,z thỏa x(x+2y+3z)=-5; y(x+2y+3z)=27 ; z(x+2y+3z)=5
Ta có: \(\left\{{}\begin{matrix}x\left(x+2y+3z\right)=-5\\y\left(x+2y+3z\right)=27\\z\left(x+2y+3z\right)=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-5}=x+2y+3z\\\dfrac{y}{27}=x+2y+3z\\\dfrac{z}{5}=x+2y+3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{-5}=\dfrac{y}{27}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-27}{5}x\\z=-x\end{matrix}\right.\)
Ta có: \(x\left(x+2y+3z\right)=-5\Rightarrow x\left(x+2.\dfrac{-27}{5}x-3x\right)=-5\)
\(\Rightarrow\dfrac{-64}{5}x^2=-5\Rightarrow x^2=\dfrac{25}{64}\Rightarrow x=\dfrac{5}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{27}{5}x=-\dfrac{27}{8}\\z=-x=-\dfrac{5}{8}\end{matrix}\right.\)
Cho ba số thực x,y,z thoả mãn : x+2y+3z=18
Cmr : \(\dfrac{2y+3z+5}{1+x}+\dfrac{3z+x+5}{1+2y}+\dfrac{x+2y+5}{1+3z}\ge\dfrac{51}{7}\)
\(VT=\dfrac{2y+3z+5}{1+x}+1+\dfrac{3z+x+5}{2y+1}+1+\dfrac{x+2y+5}{1+3z}+1-3\)
\(VT=\dfrac{x+2y+3z+6}{1+x}+\dfrac{x+2y+3z+6}{1+2y}+\dfrac{x+2y+3z+6}{1+3z}-3\)
\(VT=24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)-3\ge\dfrac{24.9}{1+x+1+2y+1+3z}-3=\dfrac{216}{21}-3=\dfrac{51}{7}\)
Tính tổng \(S=x+2y+3z\), biết rằng:
\(\dfrac{1}{x+2y}+\dfrac{1}{2y+3z}+\dfrac{1}{3z+x}=\dfrac{12x}{2y+3z}+\dfrac{24y}{3z+x}-\dfrac{36z}{x+2y}=2016\)
Tìm x,y,z biết
x/2y + 3z + 1 = 2y/x + 3z + 2 = 3z/x + 2y - 3
Mn giải nhanh hộ em nhé!