Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuy Hoang
Xem chi tiết
Pham Van Hung
Xem chi tiết

Bài làm

Thep phương pháp đưa về đồng bậc, có:

\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)

\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)

\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)

\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0

\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y

Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )

<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.

~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~

Khách vãng lai đã xóa
Phuc
Xem chi tiết
Nguyen Ngoc Anh
Xem chi tiết
phan thị oanh
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Eren
11 tháng 11 2018 lúc 19:38

hpt

Ho Nhat Minh
24 tháng 12 2019 lúc 5:26

HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)

The vao roi tinh la xong

Khách vãng lai đã xóa
Duck Nguyen
Xem chi tiết
Nguyễn Khánh Toàn
Xem chi tiết
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:40

\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)