Giai he phuong trinh
\(xy=x+2y+3\)
\(4x^3-y^3=24x^3-45x^2+15y+41\)
giải hệ phương trình:xy=x+2y+3 và 4x3-y3=24x2-45x+15y+41
Giai he phuong trinh: \(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)
Bài làm
Thep phương pháp đưa về đồng bậc, có:
\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)
\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)
\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)
\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)
\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0
\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y
Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )
<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.
~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~
giai he phuong trinh 2x^2-xy=xy^2_2x+y
(x^2+2y^2)(1+1/xy)^2=3
giai he phuong trinh sau :
x^3 - x^2 y^2 - y^3 + 1 = 0 va x^3 + xy - 2 = 0
giai he phuong trinh
x+2\x+1\y=4
1\x^2+1\xy+x\y=3
giai he phuong trinh \(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{matrix}\right.\)
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)
The vao roi tinh la xong
giai he phuong trinh x/x-1 + 2y/y+2 = 3 va 2x/x-1 - y/y+2 = -4
Giai he phuong trinh : \(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2+xy=7x+5y-9\end{matrix}\right.\)
Giai he phuong trinh bang phuong phap cong va phuong phap the
<=> \(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)