Cho A là tập hợp tất cả nghiệm của phương trình \(x^2-4x+3=0\); B là tập hợp các số có giá trị tuyệt đổi nhỏ hơn 4. Khẳng định nào sau đây đúng
A. \(A\cap B\)
B.\(A\cup B\)
C. \(A\B\)
D. B\A
Cho A là tập hợp tất cả các nghiệm của phương trình x 2 − 4 x + 3 = 0 ; B là tập hợp các số có giá trị tuyệt đối nhỏ hơn 4. Khẳng định nào sau đây đúng?
A. A ∪ B = A
B. A ∩ B = A ∪ B
C. A \ B = ∅
D. B \ A = ∅
Bất phương trình 4 x + m + 1 2 x + 1 + m ≥ 0 nghiệm đúng với mọi x ≥ 0 . Tập hợp tất cả các giá trị của m là
A.
B.
C.
D. Không có m thỏa mãn
Cho phương trình ( m - 5 ) . 3 x + ( 2 m - 2 ) . 2 x . 3 x + ( 1 - m ) . 4 x = 0 , tập hợp tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt là khoảng (a;b). Tính S=a+b
A.4
B.5
C.6
D.8
Tập hợp tất cả các giá trị của tham số m để phương trình 4 x − m .2 x + 1 + 3 m − 3 = 0 có hai nghiệm trái dấu là
A. − ∞ ; 2
B. 1 ; + ∞
C. 1 ; 2
D. (0;2)
Tập hợp tất cả các giá trị của tham số m để phương trình 4 x - m . 2 x + 1 + 3 m - 3 = 0 có hai nghiệm trái dấu là
Cho phương trình sinx 1 + cos x = 0 . Gọi T là tập hợp tất cả các nghiệm của phương trình trên đoạn [0;2018π]. Tìm số phần tử của tập T.
A. 2019.
B. 1009.
C. 1010
D. 2018
cho tập hợp A={xϵ R |\(\dfrac{2x}{x^2+1}\)≥1} ; B là tập hợp tất cả các giá trị nguyên của b để phương trình x2 -2bx+4=0 vô nghiệm .Tìm số phần tử chung của hai tập hợp trên
\(\dfrac{2x}{x^2+1}\ge1\Leftrightarrow2x\ge x^2+1\Leftrightarrow x^2-2x+1\le0\\ \Leftrightarrow\left(x-1\right)^2\le0\)
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\left\{1\right\}\)
Để \(x^2-2bx+4=0\Leftrightarrow\Delta=4b^2-4\cdot4< 0\)
\(\Leftrightarrow b^2-4< 0\Leftrightarrow\left(b-2\right)\left(b+2\right)< 0\\ \Leftrightarrow x\le-2;x\ge2\)
\(\Leftrightarrow B=\left\{x\in R|x\le-2;x\ge2\right\}\)
Vậy \(A\cap B=\varnothing\)
Cho phương trình (m + 1) 16x - 2( 2m - 3) .4x + 6m + 5 = 0 với m là tham số thực. Tập tất cả các giá trị của m để phương trình có hai nghiệm trái dấu có dạng (a; b). Tính P = a.b
A. 4
B. -4
C. 5
D. -5
Tập tất cả các giá trị của tham số m để phương trình 16 x - 2 ( m - 3 ) 4 x + 3 m + 1 = 0 có nghiệm là:
A. - ∞ ; - 1 3 ∪ [ 8 ; + ∞ )
B. ( - ∞ ; - 1 3 ] ∪ [ 8 ; + ∞ )
C. - ∞ ; - 1 3 ∪ ( 8 ; + ∞ )
D. ( - 1 ; 1 ] ∪ [ 8 ; + ∞ )
Đáp án A
Phương pháp: Đặt t = 4 x
Cách giải:
Đặt t = 4 x (t>0), khi đó phương trình trở thành:
Với t = 3 2 => Phương trình vô nghiệm
Với t ≠ 3 2 (t>0) phương trình trở thành
Để phương trình ban đầu có nghiệm
Xét hàm số ta có:
Lập BBT ta được :
Để phương trình có nghiệm dương thì
S là tập hợp tất cả các giá trị thực của tham số a thỏa mãn mỗi nghiệm của bất phương trình log x ( 5 x 2 - 8 x + 3 ) > 2 đều là nghiệm của bất phương trình x 2 - 2 x - a 4 + 1 ≥ 0 . Khi đó:
A. S = - 10 5 ; 10 5 .
B. S = - ∞ ; - 10 5 ∪ 10 5 ; + ∞
C. S = - 10 5 ; 10 5 .
D. S = - ∞ ; - 10 5 ∪ 10 5 ; + ∞ .