Cho hcn ABCD vuông tại A có AB=8cm , AC=15cm đường cao AH
a)Tính BD
b)Tính khoảng cách từ A xuống BD
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
Cho tam giác vuông ở A ,có AB=8cm,AC=15cm,đường cao AH
a,Tính BC,BH,AH
b,Gọi M,N lần lượt là hình chiếu của H lên AB và AC.tứ giác AMNH là hình gì ? Tính độ dài đoạn MN
c,Chứng minh AM.AB=AN.AC
a, áp dụng Pytago cho tam giác ABC ta đc: BC=
diện tích tam giác ABC=1/2. AB.BC = 1/2 AH.BC => AB.BC=AH.BC=> AH=15.8:17=120/17
b, Tứ giác AMNH là hình chữ nhật vì có 3 góc vuông.
suy ra MN=AH = 120/17
c, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2
tam giác ANH đồng dạng tam giác AHC (g.g) => AN/AH = AH/AC => AN.AC = AH^2
suy ra AM.AB = AN.AC.
Cho tam giác ABC vuông tại A , AB=6cm AC=8cm vào đường cao AH
a) cm Tam giác đồng dạng tam giác HBA Tính AE
b) tính độ dài BC , AH , BH , CH
c) gọi BD là phân giác của góc ABC ( D thuộc AC ) tính diện tích tam giác ABD
a: BC=10cm
Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
CHO HCN ABCD CÓ AD=8CM DC=15CM
A, TÍNH AC
B, ĐƯỜNG THẲNG ĐI QUA D VÀ VUÔNG GÓC VỚI AC TẠI M CẮT AB Ở ĐIỂM N VÀ CẮT CB Ở ĐIỂM i.TÍNH DM
C, CM; MD^2=MI.MN
a.Tam giác ADC vuông tại D :
\(AC=\sqrt{AD^2+CD^2}=\sqrt{8^2+15^2}=17\)(cm)
b.Xét tam giác ACD vuông tại D
Theo hệ thức lượng ta có:
DM.AC=AD.DC
DM=\(\frac{8\cdot15}{17}=\frac{120}{17}\)(cm)
c.Ta thấy tam giác ANM ~ tam giác INB
mà tam giác INB ~ tam giác ICM
vậy tam giác ANM ~ tam giác ICM
từ đó ta có được
MN.MI=CM.AM
Mặt khác áp dụng htl trong tam giác ADC ta có: CM.AM=DI2
Vậy MN.MI=DI2
@.@
Cho hbh ABCD có Ab=8cm khoảng cách từ giao điểm O 2 đường chéo AC và BD đến AB,BC lần lượt bằng 3cm và 4cm a) tính diện tích hbh b) tính BC
Cho HCN ABCD có : AD=8cm, CD=15cm
tính AC đường thẳng qua D và vuông góc với AC tại M cắt AB tại N và cắt tia CB tại I. Tính DM.Cm: MD^2= MN.MItính góc BMCcho hcn ABCD có AB = 8cm BC = 15cm
a tính đọ dài đoạn thẳng BD
b vẽ AH vuông góc với BC tại H tính đọ dài AH
c đường thẳng AH cắt BC và DC lần lượt tại I và K chứng minh AH2 = HI * HK
Cho hình thang ABCD(AC//BD) có 2 đường chéo BD và AC vuông góc. Biết BD=15cm, AC=20cm
a) Tính SABCD
b) Tính chiều cao ABCD
Cho tam giác ABC vuông tại A, đường cao AH
a) Chứng minh: Tam giác HBA đồng dạng với tam giác ABC và góc BAH = góc BCA
b) Chứng minh AH2 = BH . HC
c) Kẻ phân giác BD của góc ABC ( D thuộc AC ) cắt AH tại E. Cho AB = 15cm, AC = 20cm. Tính BD.
d) Gọi M là trung điểm của ED. Kẻ EF vuông góc với AB tại F. Chứng minh ba đường thẳng EF, BH, AM đồng quy.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>góc HAB=góc ACB
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: BC=căn 15^2+20^2=25cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5
=>AD=7,5cm
BD=căn 15^2+7,5^2=15/2*căn 5(cm)