Tìm b ∈ ℤ sao cho:
8b + 46 là bội số của b + 8
Tìm b ∈ ℤ sao cho:
8b - 62 là bội số của b - 7
\(8b-62⋮b-7\)
\(\Rightarrow8b-56-6⋮b-7\)
\(\Rightarrow8.\left(b-7\right)-6⋮b-7\)
Mà \(8.\left(b-7\right)⋮b-7\)
\(\Rightarrow6⋮b-7\)
\(\Rightarrow b-7\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow b-7\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow b\in\left\{8;6;9;5;10;4;13;1\right\}\)
Vậy b = 1;4;5;6;8;9;10;13
Tìm b ∈ ℤ sao cho:
8b + 30 là bội số của b + 5
Đáp số b ∈ { }
Dùng dấu chấm phảy (;) hoặc dấu phảy (,) để phân cách các số
=>8b+30 chia hết cho b+5
=>8(b+5)-10 chia hết cho b+5
mà 8(b+5) chia hết cho b+5
=>10 chia hết cho b+5
=>b+5 E Ư10)={-10;-5;-2;-1;1;2;5;10}
=>b E {-15;-10;-7;-6;-4;-3;0;5}
Vậy...
8b + 30 là bội của b + 5
8b + 40 - 10 là bội của b + 5
Mà 8b + 40 chia hết cho b + 5
Nên 10 chia hết cho b + 5
b + 5 thuộc U(10) = {-10;-5;-2;-1;1;2;5;10}
b thuộc {-15 ; -10;-7;-6;-4;-3;0;5}
Tìm b ∈ ℤ sao cho:
b - 3 là ước số của 8b - 14
Ta có: b - 3 \(\in\)Ư(8b - 14)
<=> 8b - 14 \(⋮\)b - 3
<=> 8(b - 3) + 10 \(⋮\)b - 3
<=> 10 \(⋮\)b - 3
<=> b - 3 \(\in\)Ư(10) = {1; 2; 5; 10; -1; -2; -5; -10}
Lập bảng :
b - 3 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
b | 4 | 5 | 8 | 13 | 2 | 1 | -2 | -7 |
Vậy ....
Giải
b - 3 là ước số của 8b - 14.
\(\Rightarrow\left(8b-14\right)⋮\left(b-3\right)\)
\(\Rightarrow\left(8b-24+10\right)⋮\left(b-3\right)\)
\(\Rightarrow\left[8\left(b-3\right)+10\right]⋮\left(b-3\right)\)
Vì \(\left[8\left(b-3\right)\right]⋮\left(b-3\right)\) nên \(10⋮\left(b-3\right)\)
\(\Leftrightarrow b-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau :
\(b-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(b\) | \(4\) | \(2\) | \(5\) | \(-1\) | \(8\) | \(-2\) | \(13\) | \(-7\) |
Vậy \(b\in\left\{4;2;5;-1;8;-2;13;-7\right\}\)
Câu hỏi của Nguyễn Công Minh Hoàng - Toán lớp 8 - Học toán với OnlineMath
Tìm c ∈ ℤ sao cho:
4c là bội số của c + 3Tìm c ∈ ℤ sao cho:
4c là bội số của c + 3
Đáp số b ∈ { }
\(4c\in B\left(c+3\right)\)
\(\Rightarrow4c⋮c+3\)
mà \(c+3⋮c+3\)
Từ 2 điều trên suy ra:
\(4c-\left(c+3\right)⋮c+3\)
\(=4c-c-3⋮c+3\)
\(=3c-3⋮c+3 \)
\(\Rightarrow3c⋮c+3\)và \(-3⋮c+3\)
\(\Rightarrow c+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
c+3 | -1 | 1 | -3 | 3 |
c | -4 | -1 | -6 | 0 |
Vậy \(c\in\left\{-6;-4;-1;0\right\}\)
học tốt
Tìm b ∈ ℤ sao cho: 7b + 2 là bội số của b - 2
\(7b+2=7b-14+16=7\left(b-2\right)+16\)
Để \(7b+2⋮b-2\Leftrightarrow7\left(b-2\right)+16⋮b-2\Leftrightarrow16⋮b-2\Rightarrow b-2\in\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\Rightarrow b\in\left\{-14;-6;-2;0;1;3;4;6;10;18\right\}\)
Ta có: \(7b+2⋮b-2\)
\(\Leftrightarrow7b-14+16⋮b-2\)
mà \(7b-14⋮b-2\)
nên \(16⋮b-2\)
\(\Leftrightarrow b-2\inƯ\left(16\right)\)
\(\Leftrightarrow b-2\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(b\in\left\{3;1;4;0;6;-2;10;-6;18;-14\right\}\)
Vậy: \(b\in\left\{3;1;4;0;6;-2;10;-6;18;-14\right\}\)
Tìm b ∈ ℤ sao cho: 5b - 45 là bội số của b - 7
5b - 45 là bội số của b - 7
=> 5b - 45 chia hết cho b - 7
=> 5b - 35 - 10 chia hết cho b - 7
=> 5( b - 7 ) - 10 chia hết cho b - 7
Vì 5( b - 7 ) chia hết cho b - 7
=> 10 chia hết cho b - 7
=> b - 7 ∈ Ư(10) = { ±1 ; ±2 ; ±5 ; ±10 }
tự tính nốt nhé :))
Tìm n ∈ ℤ sao cho: 3n - 32 là bội số của n - 8
Để 3n - 32 là bội số của n - 8 thì \(3n-32⋮n-8\)
\(3n-32=3n-24-8=3\left(n-8\right)-8\)
Mà \(3\left(n-8\right)⋮n-8\)
\(\Rightarrow-8⋮n-8\\ \Rightarrow n-8\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\\ \Rightarrow n\in\left\{9;7;10;6;12;4;16;0\right\}\)
Vậy \(n\in\left\{9;7;10;6;12;4;16;0\right\}\) để 3n - 32 là bội số của n - 8
Ta có: \(3n-32⋮n-8\)
\(\Leftrightarrow3n-24-8⋮n-8\)
mà \(3n-24⋮n-8\)
nên \(-8⋮n-8\)
\(\Leftrightarrow n-8\inƯ\left(-8\right)\)
\(\Leftrightarrow n-8\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{9;7;10;6;12;4;16;0\right\}\)
Vậy: \(n\in\left\{9;7;10;6;12;4;16;0\right\}\)
Tìm b ∈ ℤ sao cho:
9 là bội số của b + 3
9 là bội của b+3 hay b+3 là ước của 9
b\(\inℤ\Rightarrow b+3\inℤ\)
=> b+3\(\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
Ta có bảng
b+3 | -9 | -3 | -1 | 1 | 3 | 9 |
b | -12 | -6 | -4 | -2 | 0 | 6 |
Ta có: 3n−32⋮n−83n−32⋮n−8
⇔3n−24−8⋮n−8⇔3n−24−8⋮n−8
mà 3n−24⋮n−83n−24⋮n−8
nên −8⋮n−8−8⋮n−8
⇔n−8∈Ư(−8)⇔n−8∈Ư(−8)
⇔n−8∈{1;−1;2;−2;4;−4;8;−8}⇔n−8∈{1;−1;2;−2;4;−4;8;−8}
hay n∈{9;7;10;6;12;4;16;0}n∈{9;7;10;6;12;4;16;0}
Vậy: n∈{9;7;10;6;12;4;16;0}