Tìm Max của:
B = \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Cho \(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
a) Rút gọn K
b) Tìm MAx củaK
a) ĐK : \(x\ne1;x\ne2;x\ne3\)
\(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(\Leftrightarrow K=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(\Leftrightarrow K=\left(\frac{2x^2}{\left(x-1\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(\Leftrightarrow K=\frac{2x^2}{x^4+x^2+1}\)
a, \(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-2\right)}{x^4+x^2+1}\)
\(=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\left(\frac{x^2\left(x-1\right)+x^2\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\frac{x^3-x^2+x^3-3x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\frac{2x^3-4x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\frac{2x^3-4x^2}{\left(x-2\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2}{x^4+x^2+1}\)
b) +) Trường hợp 1 :
Nếu \(x=0\)
\(\Rightarrow K=0\)
+) Trường hợp 2 :
Nếu \(x\ne0\)
\(K=\frac{2}{x^2+1+\frac{1}{x^2}}=\frac{2}{\left(x-\frac{1}{x}\right)^2+3}\le\frac{2}{3}\)
Vậy để K đạt GTLN khi x=2/3 \(\Leftrightarrow\)x=-1
Bài 1: Cho 3a + 5b = 12. Tìm MAX của B= ab
Bài 2: Tìm MAX A= \(\frac{y}{\left(y+10\right)^2}\left(y>0\right)\)
Bài 3: Tìm MIN A= \(\frac{x^2+x+1}{x^2+2x+1}\)
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
1) Tìm Min \(A=\frac{\left(x+1\right)\left(x+3\right)}{x}\) \(\left(x>0\right)\)
2) Tìm Min \(B=\frac{\left(x-y\right)\left(x-3y\right)}{xy}\) \(\left(x,y>0\right)\)
3) Tìm Min \(P=\frac{x}{x+2}+x\) \(\left(x>2\right)\)
4) Tìm Max \(Q=\sqrt{-3x^2+4x-1}-x^2\)
5) Tìm Max \(M=\frac{\sqrt{x-2018}}{x-1}\) \(\left(x\ge2018\right)\)
Bài 1: Tìm x, biết:
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
Bài 2: Tìm min, max của các biểu thức sau:
a) \(A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\)
b) \(B=\frac{4}{\left|x-\frac{2}{3}\right|+9}\)
Bài 2 :
Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)
Cảm ơn bạn nhiều nha
Còn câu b bạn suy nghĩ được chưa
Cho biểu thức:
A= \(\frac{2}{3}.\left(\frac{1}{1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}+\frac{1}{1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2}\right).\frac{2010}{x+1}\)
Rút gọn và tìm Max của A
Bạn nào giải giúp mình bài này với
ĐKXĐ : \(x\ge0\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)
\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)
...
Ta có : \(x^2+x+1\ge1\)vì \(x\ge0\)
Nên \(M=\frac{2020}{x^2+x+1}\le\frac{2020}{1}=2020\)
Vậy Max của M là 2020 khi x = 0
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
A=\(\frac{2\left(x+1\right)}{x^2+x+1}+\frac{2x^2-9x+4}{x^3-1}+\frac{1}{x-1}\)
a. Rút gọn
b. Tìm x để A=1
c. Tìm A max
\(ĐKXĐ:x\ne1\)
a) \(A=\frac{2\left(x+1\right)}{x^2+x+1}+\frac{2x^2-9x+4}{x^3-1}+\frac{1}{x-1}\)
\(\Leftrightarrow A=\frac{2\left(x+1\right)\left(x-1\right)+2x^2-9x+4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{2\left(x^2-1\right)+3x^2-8x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{2x^2-2+3x^2-8x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{\left(5x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{5x-3}{x^2+x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow5x-3=x^2+x+1\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy để \(A=1\Leftrightarrow x=2\)
cho bt \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, rút gọn A
b,tìm x nguyên để max
a) Điều kiện: \(x\ne\left\{0;\pm2\right\}\)
\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=[\frac{x^2}{x.\left(x-2\right).\left(x+2\right)}-\frac{6}{3.\left(x-2\right)}+\frac{1}{x+2}]:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{x-2.\left(x+2\right)+x-2}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{6}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)
\(=-\frac{1}{x-2}\)
b) \(A\) \(Max\)
\(\Rightarrow-\frac{1}{x-2}Max\)
\(\Rightarrow\frac{1}{x-2}Min\)
\(\Rightarrow\left(x-2\right)\) \(Max\)
\(\Rightarrow x\) \(Max\)
\(\Rightarrow x\in\varnothing\)
Cho biểu thức \(A=-\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
Tìm Max A