Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Anh Huyền Trân
Xem chi tiết
Ngoc Do
Xem chi tiết
Ngoc Do
15 tháng 8 2021 lúc 14:43

Giúp mình với ạ,cảm ơn mọi người

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 14:44

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

Ngô Nam Khánh
Xem chi tiết
nghiemdamquockhanh
16 tháng 6 2018 lúc 8:15

yiouoiyy

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 8:37

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 8:40

\(A=2x^2+4y^2+4xy+2x+4y+9=\left(x^2+4y^2+4xy+2x+4y+1\right)+x^2+8\)

   \(=\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(Min\left(A\right)=8\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)

Ngochuyen Nguyen
Xem chi tiết
Jung Eunmi
24 tháng 7 2016 lúc 21:43

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

trịnh thủy tiên
Xem chi tiết
Nobi Nobita
25 tháng 7 2016 lúc 20:49

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

haphuong01
25 tháng 7 2016 lúc 21:02

Hỏi đáp Toán

Hoàng Hà Trang
26 tháng 6 2017 lúc 8:32

https://olm.vn/hoi-dap/question/113563.html

- Học tốt =))trịnh thủy tiên

kiara- Hồ Hách Nhi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 10:36

a) x2 + 4y + 4y2 + 26 - 10x = ( x2 - 10x + 25 ) + ( 4y2 + 4y + 1 ) = ( x - 5 )2 + ( 2y + 1 )2

b) 4y2 + 34 - 10x + 12y + x2 = ( x2 - 10x + 25 ) + ( 4y2 + 12y + 9 ) = ( x - 5 )2 + ( 2y + 3 )2

c) -10x + y2 - 8y + x2 + 41 = ( x2 - 10x + 25 ) + ( y2 - 8y + 16 ) = ( x - 5 )2 + ( y - 4 )2

d) x2 + 9y2 - 12y + 29 - 10x = ( x2 - 10x + 25 ) + ( 9y2 - 12y + 4 ) = ( x - 5 )2 + ( 3y - 2 )2

Khách vãng lai đã xóa
Nguyễn Minh Đăng
11 tháng 10 2020 lúc 10:42

a) \(x^2+4y+4y^2+26-10x\)

\(=\left(x^2-10x+25\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-5\right)^2+\left(2y+1\right)^2\)

b) \(4y^2+34-10x+12y+x^2\) đề ntn à?

\(=\left(4y^2+12y+9\right)+\left(x^2-10x+25\right)\)

\(=\left(2y-3\right)^2+\left(x-5\right)^2\)

c) \(-10x+y^2-8y+x^2+41\)

\(=\left(x^2-10x+25\right)+\left(y^2-8y+16\right)\)

\(=\left(x-5\right)^2+\left(y-4\right)^2\)

d) \(x^2+9y^2-12y+29-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2-12y+4\right)\)

\(=\left(x-5\right)^2+\left(3y-2\right)^2\)

Khách vãng lai đã xóa
Ngô Anh Huyền Trân
Xem chi tiết
Ngân Võ Thi Thu
Xem chi tiết
Kiệt Nguyễn
10 tháng 9 2019 lúc 14:32

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

Dương tuyết mai
Xem chi tiết
ctk_new
31 tháng 10 2019 lúc 11:22

a) \(x^2-10x+4y^2-4y+26=0\)

\(\Leftrightarrow\left(x^2-10x+25\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2=0\)

Mà \(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}x-5=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{1}{2}\end{cases}}\)

Khách vãng lai đã xóa