Cho hình thang MNEF có MN//EF biết góc N=góc E và 5 lần góc N= 4 lần góc F. Tính số đo các góc trong hình thang
Cho hình thang MNEF có MN//EF biết góc N=góc E và 5 lần góc N= 4 lần góc F. Tính số đo các góc trong hình thang
MN//EF
=>\(\widehat{N}+\widehat{E}=180^0\)
mà \(\widehat{N}=\widehat{E}\)
nên \(\widehat{N}=\widehat{E}=\dfrac{180^0}{2}=90^0\)
\(5\cdot\widehat{N}=4\cdot\widehat{F}\)
=>\(\widehat{F}=\dfrac{5}{4}\cdot\widehat{N}=\dfrac{5}{4}\cdot90=112.5^0\)
MN//EF
=>\(\widehat{M}+\widehat{F}=180^0\)
=>\(\widehat{M}=180^0-112.5^0=67.5^0\)
Cho hình thang EFGH ( EF song song GH ) ta có góc F = 23/7 góc G, góc E- góc H = 70 độ. Tính số đo các góc.
Cho hình thang vuông MNEF vuông tại M và F, EF là đáy lớn. Hai đường chéo ME và NF vuông góc với nhau tại O.
1) Cho biết MN = 9 cm, MF = 12 cm.
a) Giải tam giác MNF.
b) Tính độ dài các đoạn thẳng MO, FO.
c) Kẻ NH vuông góc với EF tại H. Tính diện tích tam giác FNE. Từ đó tính diện
tích tam giác FOH.
2) Chứng minh \(MF^2=MN.FE\)
a: NF=15cm
Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5
nên góc MFN=37 độ
=>góc MNF=53 độ
\(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)
\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: Xét ΔMFN và ΔFEM có
góc MFN=góc FEM
góc FNM=góc EMF
Do đó: ΔMFN đồng dạng với ΔFEM
Suy ra:MF/FE=MN/MF
hay \(MF^2=MN\cdot FE\)
1. Cho hình thang vuông MNEF vuông tại M và F, EF là đáy lớn. Hai đường chéo ME
và NF vuông góc với nhau tại O.
1) Cho biết MN = 9 cm, MF = 12 cm.
a) Giải tam giác MNF.
b) Tính độ dài các đoạn thẳng MO, FO.
c) Kẻ NH vuông góc với EF tại H. Tính diện tích tam giác FNE. Từ đó tính diện
tích tam giác FOH.
2) Chứng minh \(MF^2\)=MN.FE
1)
a) Áp dụng định lí Pytago vào ΔMNF vuông tại M, ta được:
\(NF^2=MF^2+MN^2\)
\(\Leftrightarrow NF^2=9^2+12^2=225\)
hay NF=15(cm)
Xét ΔMNF vuông tại M có
\(\sin\widehat{MFN}=\dfrac{MN}{NF}=\dfrac{9}{15}=\dfrac{3}{5}\)
hay \(\widehat{MFN}\simeq37^0\)
\(\Leftrightarrow\widehat{MNF}=53^0\)
cho hình thang cân ABCD (AB//CD) E, F, G , H lần lượt là trung điểm của AB, BC, CD, DA. Biết góc BCD = 60 độ. tính số đo các góc trong tứ giác EFGH
Cho hình thang cân ABCD (A // CD , AB < CD). Gọi MNPQ lần lượt là trung điểm của CD, AB, DB, CA
a, Chứng minh MN là tia phân giác của góc PNQ
b, Tính số đo các góc của tứ giác MPNQ biết các góc nhọn của hình thang cân ABCD là góc C = góc B =50°
c, Hình thang ABCD thỏa mãn điều kiện gì thì tứ giác MPNQ là hình vuông
Giải giúp mình với gấp lắm ạ mai mình cần pl🥺
Cho hình thang vuông ABCD (Góc A bằng góc D bằng 90 độ) có EF=AD ( E và F lần lượt là trung điểm của AD và BC). Đường vuông góc với BC tại F cắt AD ở K. Tính FK, biết BC=10cm
Bạn đổi E thành M, F thành N nha
Kẻ MH vuông góc với BC
=>MN là khoảng cách từ M đến BC
Theo đề, ta có: MH=MA=MD=AD/2
=>ΔHAD vuông tại H
Xét ΔMDC vuông tại D và ΔMHC vuông tại H có
MC chung
MD=MH
Do đó: ΔMDC=ΔMHC
=>CD=CH
Xét ΔMAB vuông tại A và ΔMHB vuông tại H có
MH chung
MA=MH
Do đó: ΔMAB=ΔMHB
=>AB=BH
HB+HC=BC
=>AB+DC=BC
=>AB+DC=10cm
=>MN=1/2(AB+CD)=5cm
Câu 1: Cho tứ giác EFGHcó góc E=70 độ, F=80 độ .Tính G,H biết G-H=20 độ
câu 2: Cho hình thang ABCD (AB//CD) có góc A-B=40 độ, góc A=2 lần góc C. Tính các góc của hình thang ?
Cho hình thang cân ABCD đáy bé AB đáy lớn CD có góc A=120
a) Tính số đo các góc còn lại của hình thang cân ABCD
b) Cho AB=6cm. M và N lần lượt là trung điểm của AD,BC. MN cắt AC tại I. Tính số đo IN
Giải hộ tớ bài này với
Cho hình thang MNPQ có góc P > 90 độ > góc Q và góc N = 2 lần góc M.
a) Xác định các đáy của hình thang MNPQ.
b) Nếu cho thêm MN = NP = MQ:2 = a. C/m MNPQ là hình thang cân. Gọi O là giao điểm của MP & NQ. Tính góc MOQ.