CMR tứ giác ABCD là hình thang <=> phân giác trong của A và D vuông góc với nhau
CMR tứ giác ABCD là hình thang <=> phân giác trong của A và D vuông góc với nhau
Cho tứ giác ABCD có các tia phân giác của góc A và góc D vuông góc với nhau. Chứng minh rằng:
a) Tứ giác ABCD là hình thang.
b) Hai tia phân giác của góc B và góc C cũng vuông góc với nhau.
Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau
CM: tứ giác ABCD là hình thang
HOK TOT
CMR TỨ GIÁC ABCD LÀ HÌNH THANG KHI VÀ CHỈ KHI PHÂN GIÁC GÓC A VÀ GÓC B VUÔNG GÓC VỚI NHAU
56% của 5789 kg là :
5789 x 56% = 3241,84 kg
Đáp số : 3241,84 kg
cho tứ giác ABCD biết phân giác của góc A và góc B cuông góc với nhau. CMR tứ giác ABCD là hình thang
cho tứ giác ABCD có các tia phân giác của góc A và D vuông góc với nhau . Chứng minh rằng
a, tứ giác ABCD là hình thang
b, 2 tia phân giác góc B và C vuông góc
Giả sử tia phân giác của góc A và D cắt nhau tại E
ta có : \(\widehat{EAD}+\widehat{EDA}=90^0\Leftrightarrow\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{DAB}=90^0\)
Hay \(\widehat{ADC}+\widehat{DAB}=180^0\) vậy hai góc trên là hai goc bù nhau nên AB//CD
b. tương tự câu a, nếu gọi F là giao điểm của tia phân giác của B và C.
ta có
\(\widehat{ABC}+\widehat{BCD}=180^0\Rightarrow\widehat{FBC}+\widehat{FCB}=90^0\Rightarrow\widehat{BFC}=90^0\)
Vậy BF vuông góc với FC
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
cho tứ giác ABCD có các tia phân giác góc A và góc D vuông góc với nhau. Chứng Minh:
a) ABCD là hình thang
b) 2 tia phân giac góc D và góc C vuông góc với nhau
cho tứ giác ABCD có các tia phân giác góc A và góc D vuông góc với nhau. Chứng Minh:
a) ABCD là hình thang
b) 2 tia phân giac góc D và góc C vuông góc với nhau
B1, Cho tứ giác ABCD có các tia p/giác của góc A và góc D vuông góc với nhau.Chứng minh:
a)ABCD là hình thang
b) Hai tia phân giác của góc C và D vuông góc với nhau
Giúp mik với gấp lắm!