Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thị Thùy Dung
Xem chi tiết
Cao Thị Thùy Dung
Xem chi tiết
Lê Thúy An
Xem chi tiết
Lê Thúy An
Xem chi tiết
lê thanh tùng
Xem chi tiết
nguyễn thị thảo vân
24 tháng 10 2015 lúc 22:39

bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)

         =\(2\left(x-3\right)\left(x+y-3\right)\)

bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)

         P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

vậy Pmin=2 khi x=1 và y=-3

D O T | ☪ Alan Wa...
Xem chi tiết
Lê Tài Bảo Châu
13 tháng 10 2019 lúc 22:59

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Lê Tài Bảo Châu
13 tháng 10 2019 lúc 23:07

Mình làm có gì sai hả @@ 

lê duy mạnh
17 tháng 10 2019 lúc 20:05

do em điểm cao qua mà

tích cho a đi

Trịnh Ánh My
Xem chi tiết
super saiyan vegeto
6 tháng 11 2016 lúc 8:04

phân tích đa thức có dạng m2 + n ( n thuộc z)

Trịnh Ánh My
6 tháng 11 2016 lúc 9:00

bàn làm giúp mình đk ko ạ!

Dương Thị Trà My
Xem chi tiết
Thành Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2020 lúc 19:53

a) Ta có: \(A=x^2-5x+11\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)

Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)

hay \(x=\frac{5}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\)\(\frac{19}{4}\) khi \(x=\frac{5}{2}\)

b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+65\right)\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\)

Ta có: \(\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x-7=0

hay x=7

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7